A Novel Preweld Laser Surface Treatment for Enhanced Intergranular Corrosion Resistance of Austenitic Stainless Steel Weldments

A new scheme of preweld laser surface treatment is developed for Type 304 stainless steel for enhanced resistance against HAZ sensitization and intergranular corrosion

ABSTRACT

This paper describes the development of a new preweld laser surface melting treatment scheme to suppress sensitization in the heat-affected zone of gas tungsten arc weldment of Type 304 stainless steel. The results of the present study, performed on 6-mm-thick medium-carbon (0.044 wt-%) and 10-mm-thick high-carbon (0.1 wt-%) Type 304 stainless steel sheets, established that surface modification engineered by CO2 laser treatment is highly effective in suppressing heat-affected zone sensitization during subsequent gas tungsten arc welding. Laser surface treated heat-affected zone of gas tungsten arc weldment exhibited a significantly lower degree of sensitization and susceptibility to intergranular corrosion than those of untreated heat-affected zone. This is attributed to higher fraction of Σ1 subgrain boundaries introduced by laser-assisted melting and resolidification.

KEYWORDS

Laser Welding Surface Treatment Stainless Steel Heat-Affected Zone Sensitization Intergranular Corrosion Grain Boundary

Introduction

Austenitic stainless steels (SS), in spite of having excellent ductility and general corrosion resistance, are particularly susceptible to localized corrosion, e.g., crevice, pitting, intergranular corrosion (IGC), and stress corrosion cracking (SCC). Susceptibility to localized corrosion and SCC is mainly caused by the presence of chloride ions in the associated environment. In nuclear fuel reprocessing, waste management industries, and many chemical industries, the main corrosion problem is IGC when nitric acid is used as the process fluid. Sensitization is also the prime cause for intergranular stress corrosion cracking (IGSCC) of SS weldments in certain environments, e.g., oxidizing water in boiling water reactors (Ref. 1). Intergranular corrosion of austenitic SS arises from intergranular precipitation of chromium-rich carbides in the temperature range of 773–1073 K. Intergranular carbide precipitation is accompanied by the development of a chromium-depleted zone adjacent to grain boundaries. This state is referred as “sensitization.” Chromium-depleted zones, being anodic with respect to grain interior, are preferentially attacked in the corrosive environment, leading to IGC (Ref. 2). During welding of austenitic stainless steels, particularly of high-carbon content, heat-affected zones (HAZ) of the weldment get sensitized, which adversely affects their resistance against IGC during service in the susceptible environment.

There are several earlier studies involving the use of laser surface melting (LSM) treatment for enhancing corrosion resistance of austenitic stainless steels. However, most of these studies largely involved sensitization repair and dissolution of inclusions for improved IGC and pitting resistance (Refs. 3–10). Laser surface melting of SS dissolves inclusions and results in improved IGC and pitting resistance (Refs. 3–10). Laser surface melting of SS dissolves inclusions and results in improved IGC and pitting resistance (Refs. 3–10).

There are several earlier studies involving the use of laser surface melting (LSM) treatment for enhancing corrosion resistance of austenitic stainless steels. However, most of these studies largely involved sensitization repair and dissolution of inclusions for improved IGC and pitting resistance (Refs. 3–10). Laser surface melting of SS dissolves inclusions and results in improved IGC and pitting resistance (Refs. 3–10).
shown to result in improvement against sensitization. The main reasons given are high diffusion rates of chromium along random grain boundaries and a large number of chromium carbide nuclei formation. The beneficial effect of high fraction of random boundaries was demonstrated in this work through its effect on measurements of degree of sensitization, IGC and IGSCC (Refs. 14, 15). The approach usually adopted for controlling grain boundary character distribution (GBCD) involves thermomechanical treatment for inducing bulk recrystallization. A related study performed in the authors’ laboratory has demonstrated that a LSM treatment of 316(N) SS weld metal results in significant increase in its resistance against sensitization during subsequent postweld solution annealing treatment for stress relieving (Ref. 16). A recent work reported by Yang et al. has shown that a combination of LSM and a prolonged heat treatment of 304 SS at 1220 K, resulted in remarkable change in GBCD, thereby resulting in improvement of the resistance against IGC (Ref. 17). The present work was undertaken to develop a prewelding laser surface treatment for the would-be HAZ of Type 304 SS to impart enhanced resistance against sensitization during subsequent gas tungsten arc welding (GTAW). The study demonstrated the validity of the approach on a butt joint weld in sheet steel with a multi-kW CO₂ laser. Application of prewelding treatment with

Table 1 — Chemical Composition (in wt-%) of Stainless Steel Sheets Used for the Study

<table>
<thead>
<tr>
<th>Base Metal</th>
<th>C</th>
<th>Cr</th>
<th>Ni</th>
<th>Mn</th>
<th>Si</th>
<th>Mo</th>
<th>P</th>
<th>S</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium-C SS</td>
<td>0.044</td>
<td>18.16</td>
<td>9.78</td>
<td>1.5</td>
<td>0.48</td>
<td>0.26</td>
<td>0.026</td>
<td>0.015</td>
<td>Bal</td>
</tr>
<tr>
<td>High-C SS</td>
<td>0.10</td>
<td>17.8</td>
<td>8.4</td>
<td>1.3</td>
<td>0.51</td>
<td>0.23</td>
<td>—</td>
<td>—</td>
<td>Bal</td>
</tr>
</tbody>
</table>
fiber-delivered laser (Nd:YAG/fiber/diode) would provide additional flexibility to facilitate in-situ pre-welding treatment of the internal surface of tubes/pipes, which often experience IGC during their operation in susceptible environment. Such a technique would be extremely important for austenitic stainless steel weldments operating in hostile environment (e.g., a reprocessing plant), where failures can have serious consequences.

Experimental

This experimental study was performed in two parts. Part 1 of the study was carried out on 6-mm-thick Type 304 SS sheet with a C content of 0.044 wt-%, while the subsequent part of the work was performed on 10-mm-thick Type 304 SS sheet with C content of 0.10 wt-%. The substrates used in Part 1 and Part 2 of the study are referred to as medium-C SS and high-C SS, respectively. Table 1 presents chemical compositions for both base metals (in wt-%), as found out by chemical analysis. Before carrying out laser surface treatment, single-V and double-V grooves (with included angle of 75 deg) were machined in 6- and 10-mm-thick SS sheets, respectively.

The experiments involved surface treatment of would-be heat-affected zones (on both top and bottom surfaces), in one of the two parts to be butt-joint welded, with pulse modulated CO$_2$ laser beam (LB). Laser surface treatment was carried out with an indigenously developed 4-kW CO$_2$ laser (Ref. 18). The laser processing setup consisted of the laser system, integrated with a beam delivery system and a computer-controlled 3-axis workstation. The laser beam-emanating out of the laser system, was folded with a 45-deg plane gold-coated copper mirror and subsequently focused with a 127-mm focal length zinc selenide lens, housed in a water-cooled copper nozzle. Laser surface melting treatment involved scanning the surface of the base metal with a defocused LB. The working distance between movable copper nozzle and the specimen (placed below the focal plane) was adjusted to get a beam diameter of 4 mm. During the course of LSM, argon gas flowed through the nozzle to protect the expensive zinc selenide lens from possible spatter at the laser-interaction zone. The laser surface treated part was subsequently gas tungsten arc (GTA) welded to a similar untreated part — Fig. 1. Experimental parameters used for LSM and GTAW are summarized in Table 2. The HAZ developed on the laser-treated and untreated sides of the weld are referred as LSM-HAZ and N-HAZ, respectively. Laser-treated and untreated HAZ specimens were characterized by optical and scanning electron microscopy (SEM), IGC tests as per ASTM A 262 Practices A and E, and double-loop electrochemical potentiokinetic reactivation (DL-EPR) test. In addition, untreated base metal and corresponding laser-treated specimens were also characterized by X-ray diffraction and electron backscattered diffraction (EBSD).

The ASTM A 262 Practice A test is used for rapid screening of the material with respect to sensitization and IGC (Ref. 19). The test involves electrochemical etching of the polished surface of the specimen in 10% oxalic acid solution with a current density of 1 A/cm2 for 90 s. The test is used for the acceptance of material against IGC. A specimen with “ditch” microstructure in Practice A test may be susceptible to IGC but this susceptibility needs to be tested by another appropriate practice of ASTM A262. On the other hand, ASTM A 262 Practice E test involves exposing the specimens (embedded in copper turnings) to boiling 10% oxalic acid solution for 100 h.

Table 2 — Experimental Parameters Used for LSM and GTAW

<table>
<thead>
<tr>
<th>Laser Surface Treatment (LSM)</th>
<th>Peak Power</th>
<th>Power Cycle</th>
<th>Duty Cycle</th>
<th>Beam Diameter</th>
<th>Overlap Between</th>
<th>Scan Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas Tungsten Arc Welding (GTAW)</td>
<td>3.1 kW</td>
<td>100 Hz</td>
<td>50%</td>
<td>4 mm</td>
<td>50%</td>
<td>5 mm/s</td>
</tr>
<tr>
<td>Base Metal</td>
<td>Joint Type</td>
<td>Groove Type</td>
<td>Polarity</td>
<td>Current</td>
<td>Welding Speed</td>
<td>No. of Passes</td>
</tr>
<tr>
<td>Medium-C SS</td>
<td>Butt</td>
<td>Single V</td>
<td>DCEN</td>
<td>70A</td>
<td>2 mm/s</td>
<td>3</td>
</tr>
<tr>
<td>High-C SS</td>
<td>Butt</td>
<td>Double V</td>
<td>DCEN</td>
<td>70A</td>
<td>2 mm/s</td>
<td>5</td>
</tr>
</tbody>
</table>
CuSO₄-16% H₂SO₄ solution for 24 h. The exposed specimen is subsequently slowly bent with a suitable mandrel such a way that the zone to be tested (N-HAZ or LSM-HAZ) fell at the center of the bent portion, i.e., subjected to maximum tensile stress (Ref. 19). The specimens in which cracks appeared in the bent portion were categorized as sensitized. Repeating the test in each case checked the reproducibility of the results. The dimensions of the specimens used for Practice E test were 80 mm × 10 mm × thickness, and they were prepared in such a way that each contained weld metal (WM), heat-affected zones (LSM-HAZ and N-HAZ), and base metal, as shown schematically in Fig. 1.

The specimens used for the DL-EPR test were mounted in cold-setting resin in such a way to expose the desired surface. Before specimen mounting, an electrical connection was provided to the specimen by spot welding a metallic wire to its back. Subsequent specimen preparation involved 1) macro-etching the specimens, 2) identification and marking of various zones of the weldment, 3) grinding and diamond polishing up to 0.5 μm finish, and 4) masking with 3M electroplating tape to expose only the HAZ. All the edges of the specimens were masked with lacquer to avoid any crevice attack during the test. The tests were conducted in a de-aerated solution of 0.5 M sulfuric acid and 0.01 M potassium thiocyanate (KSCN). A platinum electrode was used as counter electrode while a saturated calomel electrode (SCE) was used as a reference electrode. The DL-EPR test involved sweeping electrode potential from open circuit potential in the active region to +300 mV (with respect to SCE) in the passive region at the rate of 6 V/h, followed by reverse scan back to the open circuit potential. The basic principle involved in the EPR test involves passivating the specimen’s surface, followed by subjecting it to active scan (Ref. 20). In the reverse scan, the resultant current arises mainly from incompletely passivated chromium-depleted zones (Ref. 21). Hence, the charge that passed during reactivation cycle was taken as an index of chromium-depletion. Degree of sensitization (DOS), as determined from the DL-EPR test, is expressed as DOS% = (Iᵣ/Iₐ) × 100, where Iᵣ = maximum reactivation current in reverse scan, and Iₐ = maximum activation current in forward scan, as shown schematically in Fig. 2 (Refs. 22, 23). For characterizing each zone of the weldment, one specimen was used for the DL-EPR test. Various specimens, used for the DL-EPR test, were extracted from the central region of the welded plate.

Electron backscattered diffraction (EBSD) (Refs. 14, 24, 25) was used to characterize the respective microtextures. A Quanta 200HV SEM (scanning electron microscope) with a TSL-EDX OIM (orientation imaging microscopy) or EBSD system was used. The EBSD samples were electropolished using standard technique (Ref. 14). Beam and video conditions were kept identical between the scans. For phase identification, between FCC austenite and BCC ferrite, a minimum of 5 Kikuchi bands was used. Grain boundary nature (Ref. 26) was characterized by coincident site lattice (CSL) notation. It needs to be noted that the CSL nature can affect dramatically the grain boundary energy (Ref. 26), and in turn, may determine the sensitization response (Ref. 14). CSL boundaries were identified from OIM data using Brandon’s criterion (Ref. 27):

\[\Delta \theta = 15^\circ \Sigma \% \]

where \(\Delta \theta \) is the angular deviation from the exact CSL and \(\Sigma \) is the type of CSL boundary (Refs. 28–30).

The grain boundary nature (Refs.
28–30), between different samples, can be collated in terms of possible differences in energy (Refs. 30, 14). The low-angle and the low-Σ boundaries are expected to have lower energies than the so-called random boundaries (Refs. 28–30, 14). This energy, however, depends on the exact CSL nature and also on the grain size. In an earlier study (Ref. 14), it was proposed to bring in a single parameter defining the grain boundary nature. This parameter, termed generically as effective grain boundary energy (EGBE), considered fractions of different types of CSL (f_i) with stipulated (Ref. 31) differences in CSL energy (γ_i). EGBE = (γ_i (d_i/4d))^4/γ_max (Ref. 14), where γ_i for respective CSL was calculated using the general formula γ_CLS = (1–1/Σ i γ_max (Ref. 31). The formalism, though used effectively in bringing out effects of grain boundary nature on DOS (Ref. 14), has two problems. Firstly, it does not consider possible differences in tilt-twist nature of the boundaries. Secondly, it does not consider the deviation from exact CSL nature. Two-dimensional EBSP measurements are incapable of resolving the first issue. The second issue can, however, be estimated and incorporated in an EGBE formula. The modified EGBE formulation, as used in the present study, is indeed an improvement over the earlier formalism and has been used for studies on sensitization (Ref. 32) and also to define developments in grain boundary nature with thermomechanical processing (Ref. 33).

The existing CSL model (Refs. 28–30) for grain boundaries accounts for two-dimensional misfits, but this may not be adequate in giving a three-dimensional misfit or an effective index of energy (Refs. 34, 35). For example, Z3 twin boundaries have completely different energies based on their tilt or twist nature, though the CSL notation in both cases remains the same (Refs. 28, 30). The boundary nature can also be affected by the solute presence (Refs. 28, 30). In spite of such limitations, CSL theory, in general, and EGBE, in particular, have been quite effective in defining the grain boundary nature and relating the same with sensitization behavior in austenitic stainless steel. The present study also shows a relationship between DOS and EGBE before and after laser treatment.

Results

Part 1: Conducted on Medium Carbon Type 304 Stainless Steel

Optical Microscopy

Optical microscopic examination of the transverse cross section of the weldment revealed the presence of overlapping laser surface melted tracks of about 600 μm depth on one side of the GTA weld. Laser surface melted zones exhibited typical cellular/dendritic microstructure. Figure 3 presents an optical photomicrograph of the transverse cross section of the weldment showing laser surface melted zone adjacent to weld metal (WM).

X-Ray Diffraction (XRD)

X-ray diffraction, performed on laser surface melted and untreated base metal specimens, demonstrated that, in contrast to, single-phase austenite microstructure of untreated base metal, laser melted surface was associated with duplex microstructure of austenite and δ-ferrite, as shown in Fig. 4. The amount of δ-ferrite present on laser-melted surface was estimated as 4.3%.

IGC Test: ASTM A262 Practice A

Heat-affected zones, developed on the two sides of WM (i.e., LSM-HAZ and N-HAZ), exhibited dual microstructures with discontinuous carbide precipitation along the grain boundaries. However, compared to the N-HAZ specimen, the width of the chromium-depleted zone in LSM-HAZ specimens was reduced and carbide precipitation became more discontinuous. Figure 5 compares microstructures of LSM-HAZ and N-HAZ near top and bottom surfaces of the weldment.

Double-Loop Electrochemical Potentiokinetic Reactivation (DL-EPR) Test

In order to compare DOS, induced by GTAW in LSM-HAZ and N-HAZ of gas tungsten arc weldment, DL-EPR test (Refs. 36–38) was performed on the top and bottom surfaces of the specimens extracted from the concerned regions of medium-C SS weldment. The test results demonstrated a high value of DOS% (1.12) of top LSM-HAZ surface. It should be noted that the examined surface at this stage carried surface irregularities and oxide layers, introduced by LSM and subsequent welding operation. The value of DOS% rapidly reduced as the specimen was sequentially polished off. At a depth of about 100–150 μm from the top of the treated surface, DOS% dropped to very low value of 0.0123, confirming the highly passivating nature of LSM-HAZ. The exposed surface at this stage was free of surface irregularities and all traces of oxide layer. On the other hand, all four N-HAZ specimens exhibited largely similar DOS% values viz. 0.45 and 0.26 for top and bottom surfaces, respectively. The results of DL-EPR tests are summarized in Table 3 and Fig. 6. It should be mentioned that the DOS% reported here is the average of 2 tests and the values vary within ± 0.01%.

Table 4 — Results of ASTM A262 Practice E Tests

<table>
<thead>
<tr>
<th>Specimen Type</th>
<th>Zone under Testing</th>
<th>Surface under Testing</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium-C SS</td>
<td>“N-HAZ”</td>
<td>Top Surface</td>
<td>Uncracked</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bottom Surface</td>
<td>Uncracked</td>
</tr>
<tr>
<td>High-C SS</td>
<td>“N-HAZ”</td>
<td>Top Surface</td>
<td>Uncracked</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bottom Surface</td>
<td>Uncracked</td>
</tr>
<tr>
<td></td>
<td>“LSM-HAZ”</td>
<td>Top Surface</td>
<td>Specimen broke into two parts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bottom Surface</td>
<td>Specimen broke into two parts</td>
</tr>
</tbody>
</table>

The reproducibility was achieved by keeping the time between polishing and electrochemical testing exactly the same for both specimens.

IGC Test: ASTM A262 Practice E

ASTM A262 Practice E test was conducted on four different specimens (two each from LSM-HAZ and N-HAZ) taken out of the weldment. Out of the two specimens of each kind, one was bent with top surface in tension (i.e., on the convex side) while the other specimen was bent with bottom surface in tension. All four tested specimens passed the test, indicating that heat-affected zones, developed on both the sides of WM remained unsensitized, and hence, not susceptible to IGC. Test results are summarized in Table 4.

Electron Backscattered Diffraction

Electron backscattered diffraction (EBSD) analysis revealed that the fraction of $\Sigma1$ boundaries (with angle of misorientation $\Delta \theta = 1-15$ deg) in the base metal was 0.04 and it increased to 0.13-0.19 after LSM. Figure 7 presents the typical result of the investigation carried out to measure grain boundary character distribution in base metal and laser surface melted specimen.

Part 2: Conducted on High-Carbon Type 304 Stainless Steel Sheet

IGC Test: ASTM A262 Practice A

The base metal, in solution annealed condition, exhibited step microstructure with banding and isolated carbide precipitation at grain boundaries, as shown in Fig. 8. The base metal was associated with heterogeneity in microstructure (in terms
of carbide precipitation) across its thickness. Metallographic examination of laser treated specimens exhibited a surface melted layer with thickness in the range of 270–500 µm. Laser surface melted zone was associated with typical cast microstructure, as shown in Fig. 8. On the other hand, the N-HAZ specimen exhibited ditches microstructure, while the LSM-HAZ specimen was associated with lightly etched grain boundaries, indicating relatively lower value of chromium-depletion at the grain boundaries than that in N-HAZ specimen. Figure 9 presents microstructures of N-HAZ and LSM-HAZ specimens, as revealed by ASTM A 262 Practice A test.

Double-Loop Electrochemical Potentiokinetic Reactivation Test

Double-loop electrochemical potentiokinetic reactivation (DL-EPR) tests were performed on top and bottom surfaces of N-HAZ and LSM-HAZ specimens of high-C SS. On the basis of the results of first part of the study, treated surfaces of LSM-HAZ specimens were polished to remove surface irregularities and oxide layers before conducting DL-EPR tests. The results of the tests demonstrated that GTAW brought about very large increase in DOS% in the untreated HAZ (N-HAZ). Base metal specimen in the solution annealed condition exhibited a DOS% of 0.0003, whereas the DOS% of N-HAZ specimens from top and bottom surfaces was 12.38 and 42, respectively. In sharp contrast, both LSM-HAZ specimens remained uncracked, as shown in Fig. 12. Table 4 summarizes the results of ASTM A262 practice E test.

Electron Backscattered Diffraction

Electron backscattered diffraction analysis of untreated base metal and laser surface melted specimens of high-C SS revealed that LSM brought about an increase in the percentage fraction of Σ1 boundaries (Δθ = 1–15 deg) from 0.536 (in the base metal) to 0.759 (on laser melted surface). Figure 13A presents typical results of the experiments carried out to measure GBCD in base metal and laser surface melted specimen. Further analysis of EBSD data, as presented in Fig. 13B, revealed that the bulk of Σ1 boundaries in laser-melted specimen belongs to subgrain boundaries, introduced by melting and resolidification. On the contrary, Σ1 grain boundaries constitute a major part of total Σ1 boundaries in the base metal. In addition, LSM also brought about considerable reduction in the percentage fraction of Σ3 coherent twin boundaries — from 0.1905 (in the base metal) to 0.03 (on laser-melted surface). Microstructural modification, induced by LSM, resulted in significant reduction in effective grain boundary energy (EGBE) from 1.12 (in the base metal) to 0.459 (on the laser melted surface).

Another important output of EBSD analysis is that laser-melted surface carried very little amount of delta-ferrite in a largely austenitic matrix. The fraction of delta ferrite in the base metal and on laser-melted surface was estimated as 0.7% and 0.3%, respectively. Figure 13C presents austenite-ferrite map of the microstructures of base
Fig. 12 — Magnified views of untreated HAZ (N-HAZ) and laser treated HAZ (LSM-HAZ) specimens of high-C SS after undergoing IGC test as per ASTM A 262 Practice E.

Fig. 13 — A — Typical result of the investigation performed to measure grain boundary character distributions in base metal (BM) and laser surface melted (LSM) specimens of high-C SS; B — typical distributions of (A) Σ1 boundaries (Δθ = 1–15 deg) between identifiable grains, (B) all Σ1 boundaries (Δθ = 1–15 deg), and (C) high-angle grain boundaries (Δθ = 15–180 deg) in base metal (BM) and laser surface melted (LSM) specimens. Concerned boundaries are marked in black whereas associated percentage fractions (F) are indicated on respective images; C — EBSD-generated austenite/ferrite phase maps of the microstructure of base metal (BM) and laser surface melted (LSM) specimens of high-C SS.
metal and laser-melted surface.

Synthesis of Results and Discussion

The results of first part of the study, conducted on 6-mm-thick Type 304 SS sheet with carbon content of 0.044 wt-%, demonstrated that microstructural modification induced by GTAW resulted in the development of a moderate degree of sensitization (0.26% and 0.45% for top and bottom surfaces, respectively) on the surface of untreated HAZ. A prewelding surface treatment of the would be HAZ with pulse-modulated LB, brought about a reduction in DOS of the resultant HAZ. Because of relatively lower value of C content and moderate heat input associated with 3-pass GTAW of 6-mm-thick medium-C SS sheet, the DOS induced in the HAZ was not very significant and as a result, degree of LSM-induced improvement in the DOS% of HAZ was not very prominent. This fact is reflected in both untreated and laser-treated HAZ specimens passing ASTM A 262 Practice E test.

The results of the first part of the study, although indicated an increase in materials resistance against sensitization, did not establish strong effectiveness of the technique in suppressing sensitization due to moderate level of C content and heat input associated with GTAW of 6-mm-thick SS sheet. Hence, in Part 2 of the study, LSM treatment approach was evaluated on 10-mm-thick Type 304 SS plate of high-C content (0.1 wt-%), where welding-induced microstructural damage in the HAZ was expected to be significantly extensive. Results of second part of the study exhibited that 5-pass GTAW brought about extensive sensitization in the untreated HAZ of high-C SS. As a result of GTAW, the DOS% of material rose from 0.0003 (in the base metal in solution annealed condition) to extremely high values of 12.38% and 42% on the top and bottom surfaces of untreated HAZ, respectively. In sharp contrast, DOS of laser surface treated HAZ specimens (LSM-HAZ) remained at very low level (0.03), even after experiencing similar thermal exposure. Extremely large reduction in DOS% brought about by prewelding LSM treatment, even under extremely adverse conditions (combination of high-C concentration and large heat input), underlines strong effectiveness of LSM treatment in suppressing HAZ sensitization during subsequent GTAW. The large difference in the DOS% between N-HAZ and LSM-HAZ specimens is translated into large difference in their susceptibilities against IGC. This fact is reflected in laser-treated HAZ specimen successfully passing IGC test as per ASTM A 262 Practice E, in sharp contrast to untreated HAZ specimens, which broke into two pieces. It should be noted here that in order to realize maximum beneficial effect, surface undulations introduced by LSM treatment should be removed before the parts are welded.

The EBSD analysis, performed on both medium-C and high-C SS specimens, demonstrated that LSM brought about significant increase in the fraction of Σ1 boundaries. In the case of high-C SS specimens, the increase in the fraction of Σ1 boundaries is reflected in about 2.5 times drop in effective grain boundary energy. Σ1 boundaries, with small angle of misorientation (Δθ = 1–15 deg), are characterized by low energy, slow transport properties (e.g., grain boundary chemical and thermal diffusion, grain boundary migration and sliding) as compared to high angle grain boundaries. These boundaries, because of their low energy, are more resistant to nucleation of chromium carbides. Hence, such boundaries are more resistant to sensitization (Refs. 14, 23). The increased fraction of low-angle boundaries on the laser melted surface is largely attributed to large increase in subgrain boundaries associated with fine subgrain features (like dendrites, cells, etc.), arising as a result of melting and resolidification. It is believed that these subgrain boundaries introduce frequent disruptions in random grain boundary network, thereby resulting in enhanced resistance against IGC. It should be noted that unlike duplex (austenite + ferrite) microstructure of laser-melted surface of medium-C SS, the same treatment generated a largely austenitic microstructure in high-C SS. In spite of this difference in ferrite content on the laser-treated surface, both kinds of laser-melted specimens exhibited enhanced resistance against sensitization and IGC. Hence, the large reduction in the DOS and susceptibility to IGC, brought about LSM, is primarily contributed by significant increase in the fraction of Σ1 subgrain boundaries associated with resolidified microstructure on the surface.

Conclusions

The present study demonstrated that laser surface melting treatment of the would be heat-affected zones of Type 304 SS components results in a surface microstructure with significantly enhanced resistance against sensitization during subsequent GTAW operation. The reason for enhanced resistance of laser-melted surface against sensitization and IGC is attributed to a significant increase in the fraction of Σ1 boundaries (mostly subgrain boundaries), introduced by melting and resolidification. Frequent disruptions in the random grain boundary network by intersecting subgrain boundaries is believed to be the cause for its enhanced resistance against sensitization and IGC. In light of the results of the study, a new noncontact prewelding laser surface treatment approach is proposed for GTA weldments of austenitic stainless steel to effectively enhance their resistance against HAZ sensitization and IGC. The proposed technique has a great potential in enhancing the life of austenitic stainless steel welded components operating in corrosive environments, especially prevalent in the process industry.

Acknowledgments

The authors are extremely thankful to R. K. Soni and Harish Kumar for their contributions during various stages of the present investigation. Technical assistance of J. B. Rathi, A. R. Adbol, B. S. Rawat, Ram Nihal Ram, and A. P. Singh is thankfully acknowledged.

References

12. Lin, P., Palumbo, G., Erb, U., and Aust,
WELDING RESEARCH

Do You Have Some News to Tell Us?

If you have a news item that might interest the readers of the Welding Journal, send it to the following address:
Welding Journal Dept.
Attn: Mary Ruth Johnsen
550 NW LeJeune Rd.
Miami, FL 33126.
Items can also be sent via FAX to (305) 443-7404 or by e-mail to mjohnsen@aws.org.

Change of Address?
Moving?

Make sure delivery of your Welding Journal is not interrupted. Contact the Membership Department with your new address information — (800) 443-9353, ext. 217; smateo@aws.org.

Kaul 12 09:Layout 1 11/11/09 4:53 PM Page 242