Using a Hybrid Laser Plus GMAW Process for Controlling the Bead Humping Defect

The heat input from a defocused laser beam applied in front of a GMAW pool suppresses formation of weld bead hump defects and allows higher travel speeds

BY H. W. CHOI, D. F. FARSON, AND M. H. CHO

ABSTRACT. A novel LBW + GMAW hybrid process was investigated, and its ability to suppress weld bead hump formation was characterized. The hybrid process had a relatively low-power-density laser spot focused a short distance in front of the leading edge of the GMA weld pool. The laser power and spot size were varied in tests and it was found that, for given GMAW process settings, bead humping was suppressed by laser heat input of sufficient power density. Comparison of the toe angles of humped and nonhumped weld beads made by the hybrid process and by the GMAW process suggested that capillary instability was likely a factor in weld bead hump formation, but it was not the sole factor in at least some of the tests. Observations made during the experiments suggested that weld pool fluid flows may have been an important factor in weld humping.

Introduction

This article investigates a novel hybrid laser beam welding (LBW) plus gas metal arc welding (GMAW) process that provides for control of weld bead shape and suppression of the weld bead humping defect. Weld bead humping is a defect that often sets an upper limit on the travel speed that can be used with a welding process. Because of its importance, bead humping has been the subject of research for many years.

A first, relatively thorough qualitative study was reported by Bradstreet (Ref. 1). Humping was defined as a quasi-periodic weld bead shape defect that was always associated with undercutting; a failure of the molten weld deposit to completely fill a groove defined by the fusion boundary generated by arc heat input. Capillary or Rayleigh instability (Ref. 2) of the molten weld deposit due to liquid metal surface tension, wetting of the weld metal on the adjacent solid substrate, and weld pool fluid flow were identified as factors important in hump formation, documented experimentally to various degrees and analyzed. Implicit in the discussions is the role of solidification since the humped geometry must be preserved by freezing the melt to be observed. It was noted that the hump defect was observed only at a high travel speed, that a leading (“push”) weld gun travel angle suppressed hump formation, and oxygen in the shielding gas or from the weldment surface exacerbated hump formation.

Subsequent literature (Ref. 3) discussed these factors in more detail, offered some new ones (effect of gravity in uphill welding (Ref. 4)), and described how humping could be suppressed (e.g., two-electrode arc process (Ref. 5)). Marangoni flow was proposed as a factor in hump formation (Ref. 6) and was later noted as a relatively small effect in a paper dealing with the theoretical analysis of hump formation (Ref. 7). Studies aimed at understanding and controlling the bead humping phenomena through the adjustment of weld parameters and the dual torch welding approach continue to the present time (Refs. 8–10).

As high-energy electron beam (EB) and laser beam welding processes became important, a high-speed bead shape defect mode quite similar to arc weld bead humping was identified and analyzed (Refs. 11–16). Interestingly, the first archival article cited on this subject proposes a dual electron beam solution to the problem. Because the high-energy-density processes are inherently high speed and produce narrow deep welds, weld metal flow is generally identified as being more important in humping than surface tension. Although the deep narrow welds associated with high-energy-density processes are not the same as the GMA weld bead of interest in this work, it is interesting that the dual heat source strategy for weld humping suppression was not adopted in arc welding and laser beam welding (Refs. 17, 18) until some years later. A novel humping suppression method for laser welding that is based on Lorentz force exerted by a current flow specifically introduced for this purpose has been demonstrated (Ref. 19).

One can conclude from the above cited literature that two factors are identified as dominant causes of the humping defect in arc weld beads. Both were mentioned in the seminal work by Bradstreet. Capillary instability is one key factor that is emphasized in that work, and also in the overview and theoretical analysis by Kapadia and Dowden. However, longitudinal flow in the weld pool, which becomes faster as travel speed and corresponding wire deposition rate increases for filler-added processes, is a second factor that is commonly identified.

Bradstreet identified a submerged flow stream that originates from the bottom of the weld pool crater and sweeps backward along the centerline solidification boundary to the trailing edge of the pool. Two other rearward-directed flows originate higher up on either side of the crater and merge with the centerline flow somewhere between the crater and the trailing edge of the weld pool. At this point, the longitudinal flow, which has been attenuated from energy removal due to solidification, emerges on the melt surface and sometimes is seen moving relatively sluggishly toward the leading edge of the pool as a surface flow. Nguyen et al. (Ref. 8) noted these same flows in high-speed photographs and identified them as the dominant cause of humping in his welds.

For arc welding processes, most of the

KEYWORDS

Laser Beam Welding (LBW)
Gas Metal Arc Welding (GMAW)
Weld Bead Humping
Hybrid Process
Bead-on-Plate Welds
Capillary Instability

H. W. CHOI, D. F. FARSON, and M. H. CHO are with The Ohio State University, Welding Engineering Program, Columbus, Ohio.
research literature deals with the bead-on-plate weld geometry. No literature can be found for bead humping in the more useful lap-fillet and T-fillet groove geometries. For this research, it is also interesting that dual-torch processes have been found to be less susceptible to hump formation than single-torch processes.

Independent of the welding application research into weld bead humping, closely related, but more fundamental, studies into wetting and spreading (both isothermal and nonisothermal) of liquid and solid substrates have been proceeding. Dynamic nonisothermal wetting and spreading of a linear "bead" of liquid deposited on a solid surface has been analyzed and conditions for instability (essentially, capillary-force driven instability) ware determined (Ref. 20).

Even more pertinent to welding, a nonisothermal analysis of a similar situation that allows for heat transfer and solidification of the liquid has also been carried out (Ref. 21). In this work, it is reported that liquid deposits that are well wetted to the substrate (i.e., have an internally measured contact angle of less than $\pi/2$) are not susceptible to humping by capillary instability. This result is in agreement with the earlier isothermal analysis.

Another key result from nonisothermal wetting analysis is that melt spreading speed is controlled by surface energies and resulting contact angle, very much as in an isothermal wetting case. However, the maximum extent of nonisothermal spreading is ultimately limited by heat transfer and phase transformation; simply put, when the metal freezes, it ceases to spread. This is a key insight that is useful when configuring laser heat input so as to produce desired weld bead shapes.

In this article, we return to the original concept of humping as a capillary instability for inspiration that suggests a new technique that may permit control of the defect. We propose that a defocused laser beam can be used as an auxiliary heat source to control the shape of the deposited weld metal. In the experiments described in this article, the laser beam is defocused into a relatively broad spot that travels with the arc and is directed onto the weldment in advance of the leading edge of the weld pool.

It is hoped that this additional surface heat input will heat and melt a shallow, broad area that will allow the molten weld metal to spread laterally, decreasing the toe angle and thereby decreasing the capillary instability of the molten deposit. The ability to adjust this additional heat source so as to prevent weld bead humping is characterized, and its effects are analyzed. In particular, the effects of capillary forces and flow on weld bead humping are deduced from the experimental results.

Experimental Apparatus and Procedure

A GMAW apparatus that allowed for flexible integration of a laser beam heat source was integrated. A sketch of the position and orientation of the GMAW process and laser beam focus is shown in Fig. 1, and details of the welding process settings are given in Table 1. A pulsed GMAW power source was used to deposit bead-on-plate welds in the flat position on hot-rolled steel sheet with as-received surface condition. With the exception of wire feed and travel speed, the GMAW process settings remained fixed during all tests. The laser beam focus position was positioned in front of the leading edge of the GMAW weld pool, and the focal point elevation was adjusted to produce a laser focus spot diameter measured normal to the travel direction.

Relative positions and orientations of the arc and laser processes and other welding process variable settings are summarized in Fig. 1. The laser beam incidence angle setting remained fixed during the tests, and the relative position of the laser spot and the arc were fixed at 0.1–0.2 in. (0.25–0.5 mm). However, the laser power and focus spot size were varied to determine their effects on hump preven-

Table 1 — Welding Apparatus and Process Settings

<table>
<thead>
<tr>
<th>Process Variable</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMAW power source</td>
<td>ESAB Digipulse 450i cvcc</td>
</tr>
<tr>
<td>GMAW pulse mode/trim</td>
<td>Synergetic/99-122</td>
</tr>
<tr>
<td>Filler material/diameter</td>
<td>ER70S-6/0.045 in. (1.1 mm)</td>
</tr>
<tr>
<td>Base material/thickness</td>
<td>HR 1008 steel plate/14, 16 gauge</td>
</tr>
<tr>
<td>Shielding gas/flow rate</td>
<td>Ar, 90% Ar-10% CO₂/35 ft³/h (14 L/min)</td>
</tr>
<tr>
<td>Contact tip-to-work distance</td>
<td>0.875 in. (22 mm)</td>
</tr>
<tr>
<td>Laser</td>
<td>Rofin Sinar RS850</td>
</tr>
<tr>
<td>Laser focus optic/focal length</td>
<td>Parabolic mirror/10 in. (25.4 mm)</td>
</tr>
<tr>
<td>Laser focus spot width W_1</td>
<td>0.1–0.27 in. (2.54–6.86 mm)</td>
</tr>
<tr>
<td>Laser power P_1</td>
<td>2.0–3.5 kW</td>
</tr>
<tr>
<td>Arc laser spot spacing</td>
<td>0.13–0.2 in. (3–5 mm)</td>
</tr>
</tbody>
</table>

Fig. 1 — Hybrid process setup.

Fig. 2 — Travel speed limits of the GMAW and hybrid processes for bead-on-plate welds. Sound (nonhumped) weld beads were not possible at 80 in./min with the GMAW process, but were possible at 150 in./min (3.75 m/min) and with a higher deposition rate with the hybrid process.
Argon was used as a shielding gas for some initial tests because it is known to exacerbate weld bead humping. However, as more experience was gained with the bead humping defect, it was found that humping was obtained at feasible travel speeds with the more conventional 90% argon-10% CO$_2$ shielding gas, which was used for the majority of the tests. After welding, the standard deviation and range (maximum–minimum) of the height and the weld toe angles of the bead-on-plate welds were measured using a laser line scan weld inspection system (Servo-Robot WISC).

Experimental Results

Hybrid and GMA bead-on-plate welds were made over a range of wire feed speed, travel speed, and other process variable settings. Bead humping severity was quantified by measuring the range of weld bead height over the length of the weld, and the effect of various process settings on bead height variation was determined. Laser beam heating was found to suppress weld bead humping in both bead-on-plate (Fig. 2) and lap-fillet (Fig. 3) weld geometries. These figures show that for comparable deposit areas, the hybrid process was able to operate at a higher travel speed without bead humping — the speed for acceptable (nonhumped) bead-on-plate and lap-fillet welds was nearly a factor of two higher for the hybrid process. However, it is also interesting to note that beads deposited with the hybrid process also formed humps when the travel speed was sufficiently large. Humped beads were defined as those having a bead height variation along their length more than 0.03 in. (0.75 mm).

A graphical illustration of the hump prevention capability of the hybrid process is shown in Fig. 4. Two bead-on-plate welds made with the same GMAW settings are shown — the one made with the hybrid process has a smooth contour, while the other made with the GMAW process alone is severely humped.

The bead-on-plate welds were studied in more detail to determine parameter effects on humping. The experimental results are compiled in Table 1, and the effects of laser power and laser spot size weld bead humping are quantified in Figs. 5 and 6. For these tests, the conditions...
were \(S = 100 \) in./min (42 mm/s) and \(S_w = 550 \) in./min (233 mm/s). For a fixed laser spot size of 0.2 in. (0.5 mm), a power of slightly more than 3 kW was needed to suppress humping. Laser spot widths of 0.05 in. (1.3 mm) or more were found to suppress humping, but the widest spot of 0.27 in. (6.9 mm) did not. Since laser power was adjusted during the tests depicted in Fig. 6 to maintain comparable power densities, the results from Figs. 5 and 6 are plotted against laser power density in Fig. 7. These results show that irrespective of width or power variation, a laser power density of approximately 16 kW/cm\(^2\) was sufficient to suppress bead humping. Also, it was noticed that the power density of the widest spot from Fig. 6 was only about 8 kW/cm\(^2\), which is less than the threshold needed to prevent humping.

This research was initiated with a hypothesis that the GMAW humping defect could be prevented by adding additional heat sources to the welding process to promote wider weld beads with smaller internal wetting angles (equivalently, larger external toe angles), thereby avoiding capillary instability. To test whether the observed humping suppression was due to this effect, toe angles (external angles measured by laser scanner) were compared to the critical angle of 90 deg for various welding conditions. Note that the
maximum toe angle is used based on a supposition that the stability of an asymmetrical weld deposit should be controlled by the larger of the two toe angles.

The results, summarized in Figs. 8–10 for noted conditions, show that the laser hybrid welds did indeed have larger toe angles and less height variations as quantified by the standard deviation of weld bead height over the length of the weld. However, there is considerable scatter in the correlation between the two variables. This variability is due to the fact that the points in Figs. 8 and 9 represent many different GMA and hybrid process settings. It is also notable that all of the measured toe angles are significantly greater than the critical static angle of 90 deg. In itself, this indicates that factors besides capillary instability play a role in the bead hump formation in our experiments.

To quantify the role played by other welding parameters in the toe angle-bead humping relationship, a multilinear regression was carried out on the data of Fig. 8. Further analysis showed more vividly that hump formation is sometimes affected by factors other than capillary instability. All other process settings being equal, additional laser heat input would inevitably result in a longer weld pool and more time for capillary instability to form a humped weld bead. Thus, for the same weld toe angle and GMA process settings, it might be expected that bead height variation of the hybrid weld beads would probably be worse than GMA weld beads if capillary forces were the sole factor in humping. However, several data points for this case (three points on the left side of Fig. 9; data are highlighted in Table 2) show that a hybrid weld with the same toe angles as GMA welds was humped less. Thus, it may be concluded that the beneficial effects of the hybrid process were not solely due to improved weld bead shape.

A likely additional effect of the hybrid process was noticed while doing the experiments — it was observed that the leading edge of the weld pool was located further in advance of the welding arc for the hybrid process when laser power was high enough to be effective. This change would significantly effect weld pool fluid flow by decreasing the conversion of downward droplet momentum into backward weld pool jet momentum. Considering this affect, it is conjectured that the mechanism of humping suppression of the hybrid process investigated in this work may be similar to that of the two-arc or dual-beam processes mentioned in the literature survey.

Conclusions

A novel LBW plus GMAW hybrid process was investigated, and its ability to suppress weld bead hump formation was
References

