ABSTRACT. Duplex stainless steel clad metals contain delta ferrite, which is expressed in terms of Ferrite Number (FN). The amount of ferrite present in the deposit is a function of chemical composition of the filler and base metals, welding process, type of shielding gas, welding procedure, and heat input during cladding. Excessive ferrite in duplex stainless steel claddings can result in poor ductility, toughness, and corrosion resistance. Likewise, insufficient ferrite can also produce inferior mechanical and corrosion resistance properties. Hence, control of ferrite in duplex stainless steel cladding is essential to obtain the required mechanical and corrosion-resistant properties.

This paper highlights the application of response surface methodology to develop mathematical models and to analyze various effects of flux cored arc welding (FCAW) process parameters on the FN of duplex stainless steel clad metals. The experiments were conducted based on four-factor, five-level, central composite rotatable design with full replications technique and mathematical models developed using multiple regression technique. The developed mathematical models are very useful for predicting and controlling the FN in duplex stainless steel cladding. The main and interaction effects of input process parameters on calculated FN (by WRC-1992 diagram) and measured FN have been presented in graphic form, which helps in selecting FCAW process parameters to achieve the required FN.

Introduction

Weld cladding is a process in which a thick layer of a weld metal is deposited onto a carbon- or low-alloy-steel base metal to provide a corrosion-resistant surface. It finds extensive use in numerous industries such as paper, chemical, fertilizer, nuclear, food processing, petrochemical, and other allied industries. The desirable characteristics of cladding material are reasonable strength, weldability to the steel, resistance to general and localized corrosion attack, and good corrosion fatigue properties (Ref. 1). In recent years, duplex stainless steel is extensively used for weld cladding because it has excellent chloride stress corrosion cracking resistance, pitting and crevice corrosion resistance, yield strength, ductility, impact toughness, and weldability (Ref. 2).

The composition and properties of clad metals are strongly influenced by dilution, as illustrated in Fig.1. It is the amount of base metal melted (B) divided by the sum of the filler metal added and base metal melted (A+B). Dilution reduces the alloying elements and increases the carbon content in the clad layer, which reduces corrosion resistance properties and causes other metallurgical problems. It also affects the ferrite content in claddings. The amount of ferrite present in duplex stainless steel clad metals influences mechanical and corrosion properties. Both strength and stress corrosion cracking resistance may be reduced when the FN is less than 30, and there is a loss of both ductility and toughness of the clad metal when the FN is above 70 in duplex stainless steel weld claddings (Ref. 3). Hence, control of the FN is essential to achieve optimum corrosion resistance and mechanical properties (Ref. 4). This can be effectively done by properly selecting the process parameters after thoroughly understanding the direct and interaction effects of process parameters on dilution.

The economics of stainless steel weld cladding are dependent on achieving the specific chemistry at the highest practical deposition rate in a minimum number of layers (Ref. 5). Heat input also affects the FN. Ferrite Number increases with a decrease in heat input. With increasing cooling rate (low heat input), the solid-state transformation is suppressed, and the residual ferrite content increases.

In stainless steel weld cladding, it is essential to understand how the dilution affects the composition and FN so as to control the corrosion resistance and mechanical properties.

During the last two decades, four constitution diagrams have found the widest application in predicting ferrite content from weld deposit composition. These include the Schaeffler Diagram, DeLong Diagram, WRC-1988 Diagram, and WRC-1992 Diagram. The Schaeffler Diagram, published in 1947, has been exten-
sively used for estimating the ferrite content of stainless steel weld metals and weld microstructure from its composition (Ref. 6). This diagram does not consider the powerful effect of nitrogen in promoting austenite, which tends to seriously overestimate the weld metal ferrite (Ref. 7). Also, the Schaeffler Diagram was used to predict the ferrite in terms of “percent ferrite,” which is imprecise. The second widely used prediction diagram, the DeLong Diagram, was published in 1974 and incorporated some improvements (Ref. 8). It has a FN scale and includes a coefficient for nitrogen in the nickel equivalent. This diagram is specifically designed for 300-series stainless steel welds containing small amounts of ferrite.

Prediction of the FN in duplex stainless steel welds is not possible using the DeLong Diagram because nickel and chromium equivalents fall outside the range of this diagram (Ref. 4).

The WRC-1988 Diagram overcomes many of the problems associated with the Schaeffler and DeLong Diagrams (Ref. 4). It was developed with data measured by the most recent definition of the FN scale. In recent years, duplex stainless steels have been used more frequently. Some of these steels and their weld metals contain significant amounts of copper, which is not included in nickel equivalent of WRC-1988 Diagram, and hence, its FN prediction accuracy is less. The WRC-1992 Diagram (Ref. 9) is the most recent of the diagrams mentioned above, and it is officially adopted by the ASME Boiler and Pressure Vessel Code for predicting the FN when the FN cannot be measured.

Among the four constitution diagrams used for estimating the FN of duplex stainless steel weld/clad metals from its composition, the WRC-1992 Diagram is more suitable due to the reasons below.

- It has a Ferrite Number (FN) scale.
- It includes a coefficient for nitrogen in the nickel equivalent.
- Nickel and chromium equivalents fall inside the range of this diagram.
- Copper term is included in nickel equivalent, hence, FN prediction accuracy is improved.
- Axes of the diagram can be extended to predict dilution effects in dissimilar materials.
welding/cladding applications.

The above diagrams do not accurately reflect the effects of welding process, technique, and cooling rate on the FN. Therefore, a study on the effects of welding parameters on the calculated FN (by WRC-1992 Diagram) and the measured FN of duplex stainless steel cladding metals may be useful. However, there is little published information available with regard to the effect of welding parameters on the FN of duplex stainless steel clad metals.

This paper highlights an experimental study carried out to analyze the effects of various FCAW process parameters on the calculated FN (by WRC-1992 Diagram) and the measured FN of duplex stainless steel cladding.

Experimental Procedure

The experiments were conducted using a constant voltage programmable welding machine (UNIMACRO 501C). In this machine, welding current can be set directly instead of changing wire feed rate for changing current level. Test plates of size 200 x 150 x 20 mm were cut from low-carbon structural steel (IS: 2062) plate, and its surfaces were ground to remove oxide scale and dirt before cladding. Flux cored duplex stainless steel welding wire of 1.2 mm diameter was used for depositing the weld beads. The chemical composition of filler and base metals is given in Table 1. Carbon dioxide (CO₂) gas at a constant flow rate of 18 L/min was used for shielding. The experimental setup used consisted of a traveling carriage with a table for supporting the specimens. The welding gun was held stationary in a frame mounted above the worktable, and it was provided with an attachment for both up and down movement and angular movement for setting the required contact tip-to-workpiece distance and welding gun angle, respectively. The experiments were conducted by laying three beads using a stringer bead technique with a constant overlap of 40%. An interpass temperature of 150°C was maintained during the cladding experiments.

Among the many independently controllable primary and secondary process parameters affecting the FN, the primary process parameters viz welding current (I) and welding speed (S), and the secondary process parameters viz contact tip-to-workpiece distance (N) and welding gun angle (T), were selected as process parameters for this study. The welding current, welding speed, and voltage are the primary parameters contributing to the heat input, influencing FN variations in the claddings. The machine used for this study was constant voltage type, hence it was decided to select the welding current and welding speed as primary process parameters. So far, few studies have been carried out on the effects of contact tip-to-workpiece distance and welding gun angle on the FN, therefore it was decided to select the contact tip-to-workpiece distance and welding gun angle (push angle) as secondary process parameters. The working ranges of all selected parameters were fixed by conducting trial runs. This was carried out by varying one of the factors while keeping the rest of them at constant values (Ref. 10). The working range of each process parameter was decided upon by inspecting the bead for a smooth appearance without any visible defects such as surface porosity, undercut, etc. The

![Fig. 4 — A — Scatter diagram of calculated FN model; B — scatter diagram of measured FN model.](image)

<table>
<thead>
<tr>
<th>Table 2 — Welding Parameters and Their Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Welding current</td>
</tr>
<tr>
<td>Welding speed</td>
</tr>
<tr>
<td>Contact tip-to-workpiece distance</td>
</tr>
<tr>
<td>Welding gun (push) angle</td>
</tr>
</tbody>
</table>

Fig. 4 — A — Scatter diagram of calculated FN model; B — scatter diagram of measured FN model.
upper limit of a factor was coded as +2, and the lower limit was coded as –2. The coded values for intermediate values were calculated using the equation

\[X_{i} = 2[(X - (X_{\text{max}} + X_{\text{min}})) / (X_{\text{max}} - X_{\text{min}})] \]

(1)

Where \(X_{i} \) is the required coded value of a variable \(X \); \(X \) is any value of the variable from \(X_{\text{min}} \) to \(X_{\text{max}} \); \(X_{\text{min}} \) is the lower limit of the variable and \(X_{\text{max}} \) is the upper limit of the variable. The chosen levels of the selected process parameters with their units and notations are given in Table 2.

The design matrix chosen to conduct the experiments was a central composite rotatable design (Ref. 11), which is shown in Table 3. In this work, 31 deposits were made using a cladding condition corresponding to each treatment combination of parameters as shown in Table 3 at random. At the end of each run, settings for all four parameters were disturbed and reset for the next deposit. This was essential to introduce variability caused by errors in experimental settings (Ref. 12).

To measure the FN of the clad metals, the cladded plates were cross sectioned at their midpoints to obtain test specimens of 20 mm wide. The top surface of each specimen was ground flat. The FN measurement was carried out using a Ferritescope. Six readings were taken on the top surface along the longitudinal axis of the three beads with the Ferritescope calibrated in accordance with procedures specified in ANSI/AWS A4.2. The average values found are given in Table 3. Using the same specimens, three test burns were taken on the top surface of the claddings to find out chemical composition using an optical emission spectrometer (ARL 3460). The average of three readings was calculated and tabulated in Table 4.

Fig. 5 — Effect of heat input on FN.

Fig. 6 — Effect of dilution on FN.

Table 3 — Design Matrix with FN and Dilution

<table>
<thead>
<tr>
<th>Trial No.</th>
<th>Design matrix</th>
<th>Calculated FN (by WRC-1992)</th>
<th>Measured FN</th>
<th>Dilution (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>S</td>
<td>N</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>33</td>
</tr>
<tr>
<td>02</td>
<td>+1</td>
<td>-1</td>
<td>-1</td>
<td>27</td>
</tr>
<tr>
<td>03</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
<td>31</td>
</tr>
<tr>
<td>04</td>
<td>+1</td>
<td>+1</td>
<td>-1</td>
<td>22</td>
</tr>
<tr>
<td>05</td>
<td>-1</td>
<td>-1</td>
<td>+1</td>
<td>33</td>
</tr>
<tr>
<td>06</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>28</td>
</tr>
<tr>
<td>07</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
<td>29</td>
</tr>
<tr>
<td>08</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>24</td>
</tr>
<tr>
<td>09</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>+1</td>
<td>-1</td>
<td>-1</td>
<td>29</td>
</tr>
<tr>
<td>11</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
<td>21</td>
</tr>
<tr>
<td>12</td>
<td>+1</td>
<td>+1</td>
<td>-1</td>
<td>19</td>
</tr>
<tr>
<td>13</td>
<td>-1</td>
<td>-1</td>
<td>+1</td>
<td>32</td>
</tr>
<tr>
<td>14</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>29</td>
</tr>
<tr>
<td>15</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
<td>28</td>
</tr>
<tr>
<td>16</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>20</td>
</tr>
<tr>
<td>17</td>
<td>-2</td>
<td>0</td>
<td>0</td>
<td>34</td>
</tr>
<tr>
<td>18</td>
<td>+2</td>
<td>0</td>
<td>0</td>
<td>24</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>-2</td>
<td>0</td>
<td>33</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>+2</td>
<td>0</td>
<td>19</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>0</td>
<td>-2</td>
<td>24</td>
</tr>
<tr>
<td>22</td>
<td>0</td>
<td>0</td>
<td>+2</td>
<td>33</td>
</tr>
<tr>
<td>23</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>24</td>
<td>0</td>
<td>0</td>
<td>+2</td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>26</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>27</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>28</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>24</td>
</tr>
<tr>
<td>31</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>24</td>
</tr>
</tbody>
</table>

where \(X \) is the required coded value of a variable \(X \); \(X \) is any value of the variable from \(X_{\text{min}} \) to \(X_{\text{max}} \); \(X_{\text{min}} \) is the lower limit of the variable and \(X_{\text{max}} \) is the upper limit of the variable. The chosen levels of the selected process parameters with their units and notations are given in Table 2.

The design matrix chosen to conduct the experiments was a central composite rotatable design (Ref. 11), which is shown in Table 3. In this work, 31 deposits were made using a cladding condition corresponding to each treatment combination of parameters as shown in Table 3 at random. At the end of each run, settings for all four parameters were disturbed and reset for the next deposit. This was essential to introduce variability caused by errors in experimental settings (Ref. 12).

A typical cladded plate is shown in Fig. 2. To measure the FN of the clad metals, the cladded plates were cross sectioned at their midpoints to obtain test specimens of 20 mm wide. The top surface of each specimen was ground flat. The FN measurement was carried out using a Ferritescope. Six readings were taken on the top surface along the longitudinal axis of the three beads with the Ferritescope calibrated in accordance with procedures specified in ANSI/AWS A4.2. The average values found are given in Table 3. Using the same specimens, three test burns were taken on the top surface of the claddings to find out chemical composition using an optical emission spectrometer (ARL 3460). The average of three readings was calculated and tabulated in Table 4. Figure 3 shows the locations of the FN and chemical analysis measurements. The chromium and nickel equivalents (\(C_{\text{eq}} \) and \(N_{\text{eq}} \)) of WRC-1992 Diagram were calculated using Equations 2 and 3. These values are also given in Table 4.
\[C_{eq} = Cr + Mo + 0.7Nb \] \hspace{1cm} (2)

\[Ni_{eq} = Ni + 35C + 20N + 0.25Cu \] \hspace{1cm} (3)

From the calculated chromium and nickel equivalents, FN values were predicted using WRC-1992 Constitution Diagram in Table 3. To study the effect of process parameters on dilution, dilution values for all specimens were measured using the following procedure. Each weld was cross sectioned at mid length, polished and etched with 2% Nital. The bead profiles were traced using a reflective type optical profile projector at a magnification of 10X, and then the deposit area and plate fusion area were measured using a digital planimeter. The measured dilution values are given in Table 3.

Development of Mathematical Models

The response function representing FN can be expressed using the equation

\[Y = f(X_1, X_2, X_3, X_4) \] \hspace{1cm} (4)

where \(Y \) = response [FN], \(X_1 \) = welding current (I) in A, \(X_2 \) = welding speed (S) in cm/min, \(X_3 \) = contact tip-to-workpiece distance (N) in mm, and \(X_4 \) = welding gun angle (T) in degrees.

The second order response surface model (Ref. 13) for the four selected parameters is given by Equation 5.

\[Y = \beta_0 + \sum_{i=1}^{4} \beta_i X_i + \sum_{i=1}^{4} \beta_{ii} X_i^2 + \sum_{i=1}^{4} \sum_{j=i+1}^{4} \beta_{ij} X_i X_j \] \hspace{1cm} (5)

The above second order response surface model could be expressed as follows:

\[Y = \beta_0 + \beta_i I + \beta_2 S + \beta_3 N + \beta_4 T + \beta_{ii} I^2 + \beta_{ss} S^2 + \beta_{nn} N^2 + \beta_{tt} T^2 + \beta_{is} IS + \beta_{in} IN + \beta_{it} IT + \beta_{sn} SN + \beta_{st} ST + \beta_{nt} NT \] \hspace{1cm} (5A)

Where \(\beta_0 \) is free term of the regression equation, the coefficients \(\beta_i, \beta_2, \beta_3, \) and \(\beta_4 \) are linear terms, the coefficients \(\beta_{ii}, \beta_{ss}, \beta_{nn}, \beta_{tt}, \beta_{is}, \beta_{in}, \beta_{it}, \beta_{sn}, \beta_{st}, \) and \(\beta_{nt} \) are quadratic terms.
\[b_{12}, b_{13}, b_{14}, b_{23}, b_{24}, \text{and } b_{34} \] are quadratic terms, and the coefficients \(b_{12}, b_{13}, b_{14}, b_{23}, b_{24}, \text{and } b_{34} \) are interaction terms. The coefficients were calculated using QA six sigma software and the same was verified by using SYS-TAT 10.2 software. After determining the coefficients, the mathematical models (Equations 6 and 7) were developed as follows:

Calculated FN (By WRC-1992 Diagram) = 26.429 - 2.458I - 3.125S + 1.208N - 0.875T + 0.674I^2 - 0.076S^2 + 0.549N^2

\[\text{Equation 6} \]

\[\text{Equation 7} \]
To develop final mathematical models, the insignificant coefficients were eliminated without affecting the accuracy of the developed models by using t-test. This is done by back elimination technique, using QA six sigma software and the same was verified by using SYSTAT 10.2 software.

The final mathematical models were constructed by using these coefficients. The developed final mathematical models (Equations 8 and 9) with process parameters in coded form are given below.

Calculated FN (By WRC-1992 Diagram)
\[
\text{Calculated } FN = 25.942 - 2.458I - 3.125S + 1.208N - 0.875T + 0.725I^2 + 0.600N^2 + 0.688IT - 1.062ST \]

\[\text{(8)} \]

Observed FN
\[
\text{Measured } FN = 31.596 - 3.750I - 4.333S + 1.000N - 1.750T + 0.771I^2 - 1.479S^2 + 0.521N^2 + 1.375IT - 2.000ST \]

\[\text{(9)} \]

To develop final mathematical models, the insignificant coefficients were eliminated without affecting the accuracy of the developed models by using t-test. This is done by back elimination technique, using QA six sigma software and the same was verified by using SYSTAT 10.2 software.

The final mathematical models were constructed by using these coefficients. The developed final mathematical models (Equations 8 and 9) with process parameters in coded form are given below.

Calculated FN (By WRC-1992 Diagram)
\[
\text{Calculated } FN = 25.942 - 2.458I - 3.125S + 1.208N - 0.875T + 0.725I^2 + 0.600N^2 + 0.688IT - 1.062ST \]

\[\text{(8)} \]

Observed FN
\[
\text{Measured } FN = 31.596 - 3.750I - 4.333S + 1.000N - 1.750T + 0.771I^2 - 1.479S^2 + 0.521N^2 + 1.375IT - 2.000ST \]

\[\text{(9)} \]

It was found that the reduced models are better than the full models because the reduced models have higher values of R² (adjusted) and lesser values of standard error of estimates than that of full models. The values of R² (adjusted) and standard error of estimates for full and reduced models are given in Table 6.

The adequacies of the developed models were tested using the analysis of variance (ANOVA) technique (Ref. 14). As per this technique, if the calculated F-ratio values for the developed models do not exceed the standard tabulated values of F-ratio for a desired level of confidence (95%), and the calculated R-ratio values for both the developed models exceed the standard tabulated values of R-ratio for a desired level of confidence (95%), then the models are said to be adequate within the confidence limit. The calculated values of F-ratio and R-ratio are given in Table 7. This shows that the developed models are adequate. The validity of these models were again tested by drawing scatter diagrams as shown in Fig. 4A and B, which show the observed and predicted values of
calculated and measured FN.

Conformity tests were conducted using the same experimental setup to conform the results of the experiments. The results of the conformity tests shown in Table 8 depict the accuracy of the developed models, which is above 94%.

Results and Discussions

The above developed models (Equations 8 and 9) can be used to predict the calculated FN (by WRC-1992 Diagram) and the measured FN by substituting the coded values (−2, −1, 0, +1, +2) of the respective process parameters. The effects of heat input and dilution on FN are represented in graphical form in Figs. 5 and 6. The responses calculated using the developed mathematical models for each set of coded welding parameters are also represented in graphical form in Figs. 7–18.

Effects of Heat Input on FN

Heat input is a relative measure of the energy transferred per unit length of weld. It is an important characteristic because it influences the cooling rate, which may affect the mechanical properties and metallurgical structure of the weld and heat-affected zones. Heat input is typically culated as the ratio of the power (i.e., voltage x current) to the velocity of the heat source (i.e., the arc). In this study, the heat input values were calculated for specimens welded at cladding conditions corresponding to trial numbers 2, 7, 17, and 28, which are given in Table 5. These are represented in graphical form in Fig. 5. It is evident from Fig. 5 that the FN increases with a decrease in heat input. At higher cooling rates (low heat input), the transformation of ferrite to austenite will be suppressed, resulting in higher residual ferrite content in the claddings (Refs. 15 and 16).

Effects of Dilution on FN

The composition and properties of clad metals are strongly influenced by the dilution obtained. Control of dilution is very important in cladding, where low dilution is typically desirable. When the dilution is low, the final deposit composition is close to that of the filler metal, and the corrosion resistance of the cladding is maintained.

The calculated values of dilution for trial numbers 2, 7, 17, and 28 (Table 5) are depicted in graphical form in Fig. 6. It is evident from Fig. 6 that FN decreases with increases in dilution. An increase in dilution enhances the C content and reduces the Cr and Ni content of the cladding. The reduction of Cr and Ni and the enhancement of C in the cladding with the increase of dilution occurred primarily because the base metal had no Cr and Ni and higher C with respect to the chemical composition of the duplex stainless steel electrode.

The change in dilution governing chemical composition of the cladding affects chromium and nickel equivalents (Ref. 17) estimated by the WRC-1992 Diagram. The increase in dilution reduces chromium equivalent and moderately decreases the nickel equivalent of the cladding, which results in reduced FN. The lower dilution in claddings resulted in higher FN in the clad metals (Ref. 18).

Direct Effects of Process Parameters on Calculated and Measured FN

Direct Effects of Welding Current on Calculated and Measured FN

From Fig. 7 it is evident that calculated and measured FN decrease with an increase in welding current. This may be due to an increase in heat input and dilution with an increase in welding current. An increase in welding current resulting in enhanced heat input and higher current density causing a larger volume of the base plate to melt and hence increased dilution. This decreases the FN of the claddings.

Direct Effects of Welding Speed on Calculated and Measured FN

From Fig. 8 it is evident that calculated and measured FN decrease with an increase in welding speed. This may be due to increased dilution of the base metal in the pool with an increase in welding speed, since the weight of deposited metal per unit of length decreases while the

Table 5 — Heat Input and Corresponding Values of Dilution and FN

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Trial No.</th>
<th>I (Volts)</th>
<th>S</th>
<th>N</th>
<th>T (kJ/mm)</th>
<th>Heat Input</th>
<th>Dilution (%)</th>
<th>Calculated FN</th>
<th>Measured FN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17</td>
<td>200</td>
<td>40</td>
<td>26</td>
<td>80</td>
<td>0.96</td>
<td>05.86</td>
<td>34</td>
<td>47</td>
</tr>
<tr>
<td>2</td>
<td>07</td>
<td>225</td>
<td>50</td>
<td>28</td>
<td>75</td>
<td>1.00</td>
<td>09.69</td>
<td>29</td>
<td>37</td>
</tr>
<tr>
<td>3</td>
<td>28</td>
<td>250</td>
<td>40</td>
<td>26</td>
<td>80</td>
<td>1.50</td>
<td>11.71</td>
<td>28</td>
<td>33</td>
</tr>
<tr>
<td>4</td>
<td>02</td>
<td>275</td>
<td>30</td>
<td>30</td>
<td>75</td>
<td>2.37</td>
<td>12.10</td>
<td>27</td>
<td>31</td>
</tr>
</tbody>
</table>

Fig. 17 — Contour plot and response surface plot for interaction effects of welding speed and welding gun angle on calculated FN.

Fig. 18 — Contour plot and response surface plot for interaction effects of welding speed and welding gun angle on measured FN.
cross section of the bead decreases very little (Refs. 19 and 20). The speed, therefore, exerts an influence on the composition of the weld bead analogous to that of current. The effect of dilution is more dominant than the effects of heat input on the FN with increased welding speed, hence the FN decreases with the increase in welding speed.

Direct Effects of Contact Tip-to-Workpiece Distance on Calculated and Measured FN

It is evident from Fig. 9 that calculated and measured FN increase slightly with an increase in contact tip-to-workpiece distance. An increase in contact tip-to-workpiece distance increases the circuit resistance, which reduces the welding current. This decrease of welding current reduces the penetration of the arc, and hence, reduces the dilution (Ref. 21). The decrease in dilution increases the FN of the clad metals. The changes in contact tip-to-workpiece distance do not affect the heat input much.

Direct Effects of Welding Gun Angle on Calculated and Measured FN

From Fig. 10 it is evident that calculated and measured FN increase with the increase in welding gun angle. The reason is when the angle is increased in forehand welding, the arc force pushes the weld metal forward, i.e., toward the cold metal, which reduces penetration and dilution (Ref. 22). This results in increased FN of the clad metals. The changes in welding gun angle do not affect the heat input much.

Interaction Effects of Process Parameters on Calculated and Measured FN

From Figs. 11 and 12 it is evident that the FN decreases with an increase in welding gun angle when welding current is from 200 to 275 A, and the rate of increase in FN also decreases with an increase in welding current up to 275 A. But when welding current is 300 A, the FN decreases with a decrease in welding gun angle. Figures 13 and 14 show the response surface and the contour plot of FN for the interaction of welding gun angle and welding current. From the contour surface, it is found that the FN has its lowest value when welding current is at its maximum value and the welding gun angle is at its maximum value. The highest value of FN is obtained when welding current is at its minimum value and the welding gun angle is at its minimum value.

Interaction Effects of Welding Speed and Welding Gun Angle on Calculated and Measured FN

From Figs. 15 and 16 it is evident that FN increases with a decrease in welding gun angle when welding speed is from 40 to 60 cm/min. The rate of increase in FN also decreases with the increase in welding speed up to 40 cm/min, but when welding speed is from 20 to 40 cm/min, FN decreases with a decrease in welding gun angle. Figures 17 and 18 show the response surface and the contour plot of FN for interaction of welding gun angle and welding speed. From the contour surface, it is found that the FN has the lowest value, when welding speed is at its maximum value and the welding gun angle is at its maximum value.

Conclusions

The effects of welding current, welding speed, contact tip-to-workpiece distance, and welding gun angle on the FN in duplex stainless steel deposits were investigated. The following are the conclusions derived from this investigation:

1) A five-level, four-factor full-factorial design matrix based on the central composite rotatable design technique can be used for the development of mathematical models to predict calculated (by WRC-1992...
ing speed was low.

4) The Ferrite Number decreases with a decrease in welding gun angle when welding current was high, but the FN decreased slightly with a decrease in welding gun angle and rise in contact tip-to-workpiece distance.

5) A decrease in welding gun angle increases the FN when welding current was low, but the FN decreases slightly with a decrease in welding gun angle when welding current was high.

6) A decrease in welding gun angle increased the FN when welding speed was high, but the FN decreased slightly with a decrease in welding gun angle when welding speed was low.

Acknowledgments

The authors wish to thank M/S Bohler welding, Austria, for providing flux cored duplex stainless steel welding wire for this work. The financial support for this work from All India Council of Technical Education and University Grants Commission are gratefully acknowledged. The authors also wish to thank the management of Coimbatore Institute of Technology and Kumarakapur College of Technology for providing all the necessary facilities to carry out this research work.

References

