Ferrite Control in Duplex Stainless Steel Weld Metal

Although it has little influence on yield and tensile strength, controlling the EFN of the weld deposit has a marked effect on ductility

BY D. J. KOTECKI

Introduction

Duplex stainless steels in wrought or cast form, when they reach the user, consist of a microstructure of approximately 50% austenite and 50% ferrite. This mix of phases imparts very desirable cast form, when they reach the user, steels of interest herein, as well as for that of wrought ferritic stainless steel. Stainless steel, and resistance to chloride approaching that of wrought austenitic double that of wrought austenitic stainless steel, ductility and toughness approaching that of wrought ferritic stainless steel. Table 1 lists composition and mechanical property limits for stainless steel plates, as specified by ASTM A240-85. The desirable microstructure of wrought or cast duplex stainless steel is obtained by heat treatment and/or hot working a structure that is initially much higher in ferrite content. The thermal treatment, generally in the temperature range of 1900° to 2100°F (1038° to 1149°C), causes part of the original ferrite to transform to austenite by a diffusion controlled reaction.

A matching weld deposit, however, without the benefit of heat treatment or hot working, reverts back to a very high ferrite content. Autogenous welds or welds with matching filler metals in alloys like 22 Cr-5 Ni-3 Mo (hereinafter referred to as Alloy 2205) or 25 Cr-5 Ni-3 Mo-2 Cu (hereinafter referred to as Alloy 255) tend to be very brittle without an annealing heat treatment. Blumfield, Clark and Guha (Ref. 1) found it advisable to increase the nickel in weld filler metals for Alloy 255 in order to obtain even 10% elongation as-welded. Likewise, Bryhan and Poznansky (Ref. 2) employed a filler metal containing 9% nickel in an otherwise matching composition to successfully join Alloy 2205.

In the same work, Bryhan and Poznansky also examined corrosion behavior, including stress corrosion cracking, for the higher nickel weld metal, and found that the corrosion resistance of the weldment was only slightly reduced compared to the base metal. These researchers made no mention of the ferrite content of their weld metals. Blumfield, Clark and Guha (Ref. 2) employed a filler metal containing 9% nickel, and found corrosion characteristics similar to those of the parent metal. In both the work of Blumfield, Clark and Guha, and that of Bryhan and Poznansky, weld metal ductility in the enriched nickel weldments was below 20%, a value generally considered necessary to pass a 2T side bend test (a ½-in.-thick slice of weldment bent 180° around a ¾-in. radius). This criterion appears to have been ignored despite the fact that it is generally a part of a fabricator's procedure qualification.

Ferrite Determination

Metallographic determination of weld metal ferrite content in largely austenitic weld metal is a very uncertain undertaking because of the fineness and irregularity of the ferrite phase. In view of this, the Welding Research Council Advisory Subcommittee on Welding Stainless Steel (Ref. 3) rejected percent ferrite determinations as unreliable, and instead adopted a ferrite number system based upon magnetic attraction of a standard magnet to the weld metal.

This ferrite number system, as defined in Ref. 3, is not directly suitable for ferrite determinations in duplex stainless weld metals because the calibration range ends at 28 FN. Pleva and Nordin (Ref. 4) characterized duplex stainless weld metal ferrite contents using a "magnetic balance," but the calibration of this system is unknown to the writer. On the other hand, the writer has shown that the familiar ferrite number system, which is

| Table 1—Composition and Mechanical Property Limits for Stainless Steel Plates |
|---------------------------------|-----------------|-----------------|-----------------|
| Type | 316 | 2205 | 255 |
| UNS Designation | S31600 | S31803 | S32550 |
| C | 0.08 max. | 0.030 max. | 0.04 max. |
| Mn | 2.00 max. | 2.00 max. | 1.5 max. |
| P | 0.045 max. | 0.030 max. | 0.040 max. |
| Si | 0.030 max. | 0.020 max. | 0.030 max. |
| Ni | 1.00 max. | 1.00 max. | 1.0 max. |
| Cr | 16.00-18.00 | 21.0-23.0 | 24.0-27.0 |
| Mo | 10.00-14.00 | 4.50-6.50 | 4.5-6.5 |
| Cu | 2.00-3.00 | 2.50-3.50 | 2.0-4.0 |
| N | 0.10 max. | 0.08-0.20 | 0.10-0.25 |
| Tensile (ksi) | 75 min. | 90 min. | 110 min. |
| Yield (ksi) | 30 min. | 65 min. | 80 min. |
| % Elongation | 40 min. | 25 min. | 15 min. |
The principle concern in this program was the mechanical properties of all-weld-metal in the as-welded condition. Two alloys were considered, Alloy 2205 and Alloy 255. Alloy 2205 was considered in more depth than the other alloy because it was the first alloy investigated in this program and there were no guidelines that would let one anticipate the extent of effects of ferrite content upon mechanical properties. When the pattern became clear, then a smaller number of compositions for Alloy 255 was investigated to see if the same general trends would be followed.

Experimental electrodes in the form of self-shielded flux cored wires were produced in either of two diameters, $\frac{3}{16}$ in. and $\frac{1}{8}$ in. (1.6 and 2.5 mm). With each electrode, an eight-layer pad for chemistry and ferrite determinations was deposited between copper blocks on a mild steel base plate, the same as would be used for covered stainless electrodes classified to AWS A5.4-80. After each of the first six layers was deposited (one pass per layer, approximately $\frac{1}{8}$ in. /19 mm wide), the pad was water quenched to below 300°F (149°C) without regard to the temperature at time of quench. For the seventh and eighth layers, since ferrite is transforming to austenite in these alloys as they cool, the deposit was allowed to air cool to black heat before quenching. Slag cover was removed after each pass.

After the pad had cooled to room temperature, the top surface of the last layer of weld metal was ground smooth on a 600 grit belt sander. Earlier work had shown that a coarse grit left surface roughness that resulted in an artificially low reading when a Magne Cage was used for EFN determinations. The surface left by 600 grit gave virtually identical readings to those from a metallographically polished surface.) Five readings were then taken with a counterweighted Magne Cage along the deposit centerline, avoiding the first and last 2 in. (arc start and crater) of the deposit. The EFN for each reading was then calculated according to the method of Ref. 5, after which the average of the five readings was calculated and rounded to the nearest whole number for reporting.

Complete chemical analysis was then performed upon the metal of the last weld pass on each pad, again avoiding the arc start and crater. Chips were milled for carbon, sulfur, nitrogen, nickel, copper, phosphorus and chromium determinations, using wet or fusion analytical

| Table 2—Alloy 2205 (22Cr-3Ni-3Mo) Experimental Welds |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Exp. no. | C | Mn | P | Si | Cr | Ni | Mo | Ti | N |
| 817 | 0.039 | 1.29 | 0.009 | 0.012 | 21.02 | 5.37 | 3.00 | 0.15 | 0.154 |
| 844 | 0.021 | 1.63 | 0.007 | 0.015 | 20.99 | 6.75 | 3.09 | 0.13 | 0.005 |
| 853 | 0.030 | 1.80 | 0.010 | 0.30 | 20.83 | 7.45 | 2.92 | 0.17 | 0.093 |
| 854 | 0.030 | 1.70 | 0.007 | 0.28 | 22.23 | 7.90 | 2.60 | 0.13 | 0.118 |
| 863 | 0.032 | 1.95 | 0.010 | 0.32 | 22.24 | 7.96 | 3.40 | 0.08 | 0.114 |
| 864 | 0.028 | 1.98 | 0.008 | 0.32 | 8.40 | 8.40 | 3.37 | 0.114 | 8.40 |

The principle concern in this program was the mechanical properties of all-weld-metal in the as-welded condition. Two alloys were considered, Alloy 2205 and Alloy 255. Alloy 2205 was considered in more depth than the other alloy because it was the first alloy investigated in this program and there were no guidelines that would let one anticipate the extent of effects of ferrite content upon mechanical properties. When the pattern became clear, then a smaller number of compositions for Alloy 255 was investigated to see if the same general trends would be followed.

Experimental electrodes in the form of self-shielded flux cored wires were produced in either of two diameters, $\frac{3}{16}$ in. and $\frac{1}{8}$ in. (1.6 and 2.5 mm). With each electrode, an eight-layer pad for chemistry and ferrite determinations was deposited between copper blocks on a mild steel base plate, the same as would be used for covered stainless electrodes classified to AWS A5.4-80. After each of the first six layers was deposited (one pass per layer, approximately $\frac{1}{8}$ in./19 mm wide), the pad was water quenched to below 300°F (149°C) without regard to the temperature at time of quench. For the seventh and eighth layers, since ferrite is transforming to austenite in these alloys as they cool, the deposit was allowed to air cool to black heat before quenching. Slag cover was removed after each pass.

After the pad had cooled to room temperature, the top surface of the last layer of weld metal was ground smooth on a 600 grit belt sander. Earlier work had shown that a coarse grit left surface roughness that resulted in an artificially low reading when a Magne Cage was used for EFN determinations. The surface left by 600 grit gave virtually identical readings to those from a metallographically polished surface.) Five readings were then taken with a counterweighted Magne Cage along the deposit centerline, avoiding the first and last 2 in. (arc start and crater) of the deposit. The EFN for each reading was then calculated according to the method of Ref. 5, after which the average of the five readings was calculated and rounded to the nearest whole number for reporting.

Complete chemical analysis was then performed upon the metal of the last weld pass on each pad, again avoiding the arc start and crater. Chips were milled for carbon, sulfur, nitrogen, nickel, copper, phosphorus and chromium determinations, using wet or fusion analytical
techniques. X-ray spectroscopy was used for molybdenum, manganese, silicon and titanium determinations.

For mechanical property determinations, a groove weld in double-buttered 3/16-in. (19-mm)-thick mild steel plate was prepared following the procedure which would be required for classification of the electrode according to AWS A5.22-80. After a single-pass root, all subsequent layers in the groove welds were deposited in two passes per layer. For both the pad and the groove welds, 3/8-in. (2.5-mm) electrodes were welded DC electrode positive, 275–300 A, 28 V, 1/4-in. (31.7-mm) electrode extension. The 5/32-in. (1.6-mm) electrodes were welded under the same conditions, except 210–230 A and 3/32-in. (19-mm) electrode extension. An interpass temperature of 300°F (149°C) was maintained during preparation of each groove weld. The groove weld was allowed to air cool to room temperature upon completion of welding.

From each groove weld, a 1/2-in. (12.7-mm)-diameter longitudinal tensile specimen was machined, along the centerline and near the top surface of the weld was machined. All subsequent layers in the groove welds were deposited in two passes per layer. For both the pad and the groove welds, 3/8-in. (2.5-mm) electrodes were welded DC electrode positive, 275–300 A, 28 V, 1/4-in. (31.7-mm) electrode extension. The 5/32-in. (1.6-mm) electrodes were welded under the same conditions, except 210–230 A and 3/32-in. (19-mm) electrode extension. An interpass temperature of 300°F (149°C) was maintained during preparation of each groove weld. The groove weld was allowed to air cool to room temperature upon completion of welding.

Alloy 2205 Experiments

A total of 14 experimental compositions approximating Alloy 2205 were produced as self-shielded flux cored electrodes. The main composition variable was initially nickel. Nickel content was varied from a near match to the base metal (about 5%) up to about 8.5%, to vary the ferrite content of the weld deposit. Titanium above a certain residual amount was also investigated. Certain compositions were repeated (approximately), using variations of the fluorspar slag system to observe if the slag system variations had any effect upon mechanical properties.

Table 2 lists the Alloy 2205 experimental compositions and test results. It is evident that the nickel content matching the base metal results in a high ferrite content, even when chromium is rather low and nitrogen is rather high, Weld Number 817. Titanium above residual levels has a very potent effect upon ferrite, as can be seen in Table 2 by comparing Welds 984, 985 and 986. The titanium effect is probably due to the formation of nitrides, which removes the potent austenitizing effect of nitrogen in solution.

It is interesting to note that the tensile and yield strengths are scarcely affected by EFN variation from as low as 34 to as high as 117. This is depicted graphically in Fig. 1. However, the ductility (percent elongation) and Charpy V-notch results at -50°F are markedly affected by the EFN of the deposit. Figure 2 demonstrates this effect for ductility, while Fig. 3 demonstrates this effect for Charpy V-notch results. Figure 2 indicates that ductility holds steady at about 30% elongation from low EFN up to at least 60 EFN, then undergoes a rather sharp transition to about 15% elongation at about 75 EFN, and declines further at higher EFN. In terms of NFN, the ductility transition occurs between 43 and 49 NFN. Figure 3 shows a more or less steady decline in Charpy V-notch energy at -50°F with increasing EFN, although there is considerable scatter.

Figure 4 compares the microstructure of a ductile weld of 46 EFN with that of a relatively brittle weld of 87 EFN. It can be seen that the ductile weld is characterized by austenite around the as-cast prior delta ferrite grain boundaries and considerable Widmanstätten austenite within the prior delta ferrite grains. On the other hand, the relatively brittle weld is characterized by columnar delta ferrite grains with austenite around the grain boundaries and not very much austenite within the delta ferrite grains. The fractured tensile specimens of the relatively brittle welds all showed areas of coarse crystalline facets resulting from fracture within the columnar ferrite (see Fig. 5), while the ductile weld tensile specimens all showed fine-grained ductile fracture surfaces.

Alloy 255 Experiments

Because of a concern that Alloy 255 weld metals might require higher molybdenum than the corresponding base metal for adequate corrosion resistance in certain media, two molybdenum levels of about 3.5% and just over 4% were investigated. Nickel and titanium were varied...
over a smaller range in this series because their effects were already understood from the Alloy 2205 series. The compositions and test results are shown in Table 3.

That molybdenum does not have an especially potent effect on promoting ferrite can be seen by comparing Welds 012 and 013. From the four welds of about 4% molybdenum, it can, however, be seen that molybdenum of this level is very detrimental to ductility, even at rather low ferrite levels, as in Welds 013 and 014, as compared to Welds 012 and 056. The three highest ferrite welds, 053, 054 and 055, have no tensile data in Table 3 because all three weldments developed transverse cracks approximately 2 h after each weldment was completed. Such delayed cracking is likely due to diffusible hydrogen, which can move readily through ferrite.

The five welds of about 3.5% molybdenum in Table 3 all exhibited high ductility, and Charpy V-notch energies above 20 ft-lb at −50°F. These are all of less than 60 EFN, so they behave exactly as did the welds of Alloy 2205. The 3.5% molybdenum weld with high ferrite (Weld 055) had poor Charpy V-notch values at −50°F and no ductility, which is consistent with the behavior of the Alloy 2205 welds of similar ferrite content.

Figure 6 compares microstructures of Alloy 225 welds of about 3.5% molybdenum with ferrite below and above 60 EFN. As with the Alloy 2205 welds, the lower ferrite microstructure shows austenite around the prior delta ferrite grain boundaries and extensive Widmanstätten austenite within the ferrite grains. The higher ferrite weld microstructure is marked by columnar ferrite with austenite on the grain boundaries, but relatively little austenite within the columnar ferrite grains.

Figure 7 presents a higher magnification microstructure of a lower ferrite weld of more than 4% molybdenum. The etch, 10% chromic acid, applied electrolytically, is supposed to preferentially attack sigma phase. This view indicates something within some, but not all, of the ferrite regions which is preferentially attacked. This attack is not apparent in the lower molybdenum weld deposits. It was initially considered that the constituent attacked was sigma or chi phase, either of which could account for the brittleness of the weld deposits containing it. It was noted that this constituent tended to be present mainly in regions where the ferrite was coarser than average.

This constituent was examined in more detail with the aid of a scanning electron microscope (SEM) with x-ray dispersive analytical capability. Figure 8 shows a concentration of particles of this constituent in a coarse ferrite region and the absence of the particles in the nearby finer ferrite regions. One notes in Fig. 8 that some of the particles appear acicular, while others appear equiaxed. The acicular particles appear somewhat larger than the equiaxed particles. Since two shapes might indicate two different phases, point counts were attempted on each shape of particle. Table 4 lists some typical results.

Comparing the composition of the ferrite matrix to that of the acicular particles leads to the conclusion that the acicular particles are austenite. This "secondary austenite" is more than an order of magnitude finer than the primary austenite between ferrite grains.

It was difficult to maintain the electron beam on the equiaxed particles, and the point analyses on these particles all show molybdenum levels like that of the ferrite, but lower chromium and higher nickel than that of the ferrite. So they are clearly
not sigma phase, but also appear to be secondary austenite. It is believed by the author that these particles are also acicular secondary austenite, but they obtain an equiaxed appearance by being sectioned perpendicular to their long axis.

Discussion of Results

The results of this study agree, in a qualitative sense at least, with the findings of Blumfield, Clark and Guha for Alloy 255, and with those of Bryhan and Poznansky for Alloy 2205. That is, for both alloys, considerably more nickel is necessary in the as-welded metal than in the heat-treated and/or hot-worked base metal to obtain reasonable weld metal ductility and toughness. A clearer understanding of the need for this higher nickel level is apparent from the microstructural evidence of Figs. 4 and 6.

At nickel levels similar to those of the base metals, the as-cast structure of the weld deposit consists of coarse columnar ferrite grains with austenite nearly continuous along the ferrite grain boundaries, but there is not much austenite within the individual columnar ferrite grains. Then the effective grain size for crack propagation in this microstructure is the coarse columnar ferrite grain size. Rather large continuous crack paths are available in this ferrite. The large crystalline facets on the broken tensile specimens of Fig. 5 are further evidence of this continuous crack path.

On the other hand, when the nickel level is sufficiently high in an otherwise matching filler metal, then sufficient Widmanstätten austenite forms within the original columnar ferrite grains to break up the continuous crack paths within the ferrite. The austenite is appreciably tougher than the ferrite and serves as a crack stopper. It also reduces the effective grain size of the ferrite to that of the spacing between the Widmanstätten austenite grains. The net result is a much more ductile and tough material.

The apparent breaking up of the continuous columnar ferrite grains by Widmanstätten austenite probably accounts for the rather sharp transition in ductility observed in the as-welded metal than in the heat-treated and/or hot-worked base metal to obtain reasonable weld metal ductility and toughness. A clearer understanding of the need for this higher nickel level is sufficiently high in an otherwise weld metal well below 60 EFN.

A low heat input weld might also have a different (probably higher) critical EFN at which the ductility transition takes place because its columnar ferrite grain size would be finer than in this study. The author's laboratory has observed good ductility and toughness will be obtained. The present work clearly demonstrates that the high yield strength of duplex stainless steels is preserved in the weld metal well below 60 EFN.

Some ferrite is clear, while other ferrite contains a second phase responsible for this. No direct evidence of sigma or chi phases was detected using the SEM. It is possible that the observed secondary austenite is but one of two decomposition products of ferrite, with the other decomposition product too small to be detected with the SEM (delta ferrite \(\rightarrow\) austenite + sigma or chi). The formation of the secondary austenite within ferrite has to be accompanied by a local enrichment of nickel and a depletion of chromium and molybdenum where the austenite forms. Then there ought to be corresponding areas where

Table 4—SEM Point Analyses on Alloy 255, Weld 014, Second-Phase Particles within Delta Ferrite

<table>
<thead>
<tr>
<th>Structure Point No.</th>
<th>Ferrite Matrix</th>
<th>Acicular Particles</th>
<th>Equiaxed Particles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>0.47</td>
<td>0.42</td>
<td>0.49</td>
</tr>
<tr>
<td>Cr</td>
<td>28.75</td>
<td>24.43</td>
<td>25.53</td>
</tr>
<tr>
<td>Mn</td>
<td>1.05</td>
<td>1.04</td>
<td>1.09</td>
</tr>
<tr>
<td>Fe</td>
<td>55.74</td>
<td>57.09</td>
<td>56.26</td>
</tr>
<tr>
<td>Ni</td>
<td>6.32</td>
<td>10.93</td>
<td>9.74</td>
</tr>
<tr>
<td>Cu</td>
<td>1.02</td>
<td>2.05</td>
<td>1.77</td>
</tr>
<tr>
<td>Mo</td>
<td>6.64</td>
<td>4.02</td>
<td>5.11</td>
</tr>
</tbody>
</table>
there is a local depletion of nickel and an enrichment of chromium and molybdenum, with such areas likely to transform to sigma or chi. But these have not been possible to detect within the limitations of the present work. This is only a hypothesis, of course.

The observation of delayed cracking in some of the Alloy 255 weldments is noteworthy. The cracked welds were all of 75 EFN or higher, and all such welds in this study cracked. Such welds are higher strength than the Alloy 2205 welds, which would make them more susceptible to hydrogen damage. At the same time, the microstructural observation of austenite along the columnar ferrite grain boundaries, but little austenite within the ferrite grains, makes it clear that there is considerable latitude for hydrogen to move within a given columnar ferrite grain. It is well known that the combination of high-strength material, high residual stress, and diffusible hydrogen can produce such delayed cracking. Because the columnar ferrite grains are surrounded by austenite on their grain boundaries, it is difficult to see how this hydrogen could be effectively removed. A cursory attempt to measure this hydrogen in an alloy 225 deposit, using the method of AWS A4.3-86, recovered no diffusible hydrogen. It is hypothesized that this is due not to the absence of diffusible hydrogen, but to austenite around the ferrite grain boundaries preventing hydrogen from escaping from the ferrite grains.

Conclusions

Based upon the results described herein, the following conclusions can be drawn:

1. The extended ferrite number (EFN) is a useful tool for characterizing and specifying duplex stainless steel weld filler metals.
2. Ferrite content below 60 EFN in nearly matching weld deposits for Alloys 2205 and 255 provides sufficient ductility and toughness that a side bend test can be passed and that Charpy V-notch energy of better than 20 ft-lb (14.7 J) at -50°F (-46°C) can be obtained.
3. Ferrite content above 30 EFN in the as-welded condition in nearly matching weld deposits for Alloys 2205 and 255 provides yield strength and tensile strength in the weld metal similar to those of the base metal.
4. Flux cored open-arc electrodes of about 8.5% nickel, which otherwise match Alloy 2205, provide appropriate ferrite for excellent mechanical properties in the as-welded condition in this alloy.
5. Flux cored open-arc electrodes of about 10% nickel, which otherwise match Alloy 255, provide appropriate ferrite for excellent mechanical properties in the as-welded condition in this alloy.
6. Molybdenum enrichment to 4% as an approach to enhancing the corrosion resistance of Alloy 225 weld metal raises the distinct possibility of embrittlement, even at low ferrite contents.
7. Alloy 225 welds can be damaged by diffusible hydrogen, at least when their ferrite content is high enough to result in a microstructure that retains the original columnar delta ferrite in a continuous form. This could be of concern in matching composition welds intended for subsequent heat treatment (for example, casting repairs) or in a highly dilute root pass.

References

KEY WORDS

Weld Ferrite Content
Ferrite in Duplex SS
Extended Ferrite No.
22Cr-5Ni-3Mo Alloy
25Cr-5Ni-3Mo-2Cu-5Fe
Flux Cored Wire Weldg
Ni for Ductility
Ni for Toughness
Ductility Transition
Toughness at -50°F

Acknowledgments

The author is grateful to Teledyne McKay for providing the environment and resources to pursue this work, and to Stanley J. Merrick for considerable assistance in the metallography portion of the work.

WRC Bulletin 314
May 1986

Bolted Flanged Connections with Full Face Gaskets
By A. E. Blach, A. Bazergui and R. Baldur

A flange type commonly called “flat-face” flange has been used in certain classes of bolted flanged connections for many years, yet no code rules exist to cover this class of flanged connections. This paper analyzes the behavior of gaskets and flanges in such a connection and gives design formulas which follow the philosophy of the present code rules for bolted flanged connections. A numerical example is included which shows the application of the design formulas and compares results obtained with values from strain gage measurements on a pressure vessel of the same size.

Publication of this report was sponsored by the Subcommittee on Bolted Flanged Connections of the Pressure Vessel Research Committee of the Welding Research Council. The price of WRC Bulletin 314 is $12.00 per copy, plus $5.00 for postage and handling. Orders should be sent with payment to the Welding Research Council, Ste. 1301, 345 E. 47th St., New York, NY 10017.