WELDING RESEARCH

Influence of Lubricants on Electrode Life in Resistance Spot Welding of Aluminum Alloys

One lubricant was found to extend the electrode life to almost double that of the unlubricated surface

BY M. RASHID, S. FUKUMOTO, J. B. MEDLEY, J. VILLAFUERTE, AND Y. ZHOU

ABSTRACT. Rapid electrode tip degradation and inconsistent joint strength are two major problems associated with resistance spot welding of aluminum alloys. A new approach of lubricating the contact between electrode and aluminum sheet to influence and perhaps extend the electrode life was examined. Different metalworking lubricants were placed between the electrode and aluminum sheet to produce different surface conditions. Keeping all weld conditions constant, electrode life experiments were conducted for both lubricated and unlubricated conditions. Joint shear strength values were periodically measured as hundreds of welds were made until either explosion/sticking occurred or a drop in the shear strength indicated the end of the effective electrode life. For the same welding conditions and failure criteria, one “good” lubricant was found to extend the electrode life to almost double that of the unlubricated surface (as received). A second set of experiments was performed to examine the action of the good lubricant. These experiments involved a variety of smaller studies including scanning electron microscopy, x-ray diffraction, hardness measurements, and electrical resistance measurements. The results of this second set of experiments suggested that the good lubricant thinned the surface oxide layer, thus reducing the heat generation at the electrode-worksheet interface. This lower heat generation reduced alloying and pitting rate, thus increasing electrode life. Future work on improving the good lubricant was contemplated.

Introduction

Because of their light weight and high strength-to-weight ratio, the use of aluminum alloys in automotive bodies is gaining popularity. The advantages of weight savings (up to 46% (Ref. 1)) and corrosion-resistant properties are considerable. Aluminum Alloy 5182 is particularly developed for automotive bodies with low surface preparation cost (Ref. 2) and is very popular in Japan (Ref. 3). Resistance spot welding (RSW) is one of the most popular sheet metal welding processes in the automotive industry because of its low cost, easy automation, and minimum skill requirements (Ref. 4). Resistance spot welding of aluminum alloys has two major problems: short electrode tip life and inconsistent weld quality (Ref. 5). An electrode can be considered to have failed, thus ending its effective life, if it produces a weld with a shear strength that drops below a certain percentage of the initial value. In some cases, even if the weld shear strength remains high enough to avoid being classified as failed, the electrode starts sticking to the worksheet surface and may produce holes in it accompanied by an arc plus an explosion during the weld process. If this condition is reached, the electrode is not safe for operation and is thus considered to have failed (Ref. 6). Electrode life, then, depends on its ability to produce strong enough welds and to permit welding to proceed without serious operational disturbances. Electrode life in RSW of aluminum alloys depends on welding parameters (current, time, and force) (Refs. 4, 7) along with electrode design features such as copper alloy selection, coating of the tip, and the macro geometry (Refs. 8, 9). These parameters have received considerable research attention, but electrode life also depends on certain initial tribological features of both the worksheet (Refs. 10, 11) and the electrode (Ref. 12).

Much is known about the electrode degradation behavior (tribology of progressive electrode wear) that eventually ends electrode life during RSW of aluminum. It starts with local alloying of electrode and sheet material during the current cycle. The alloying causes irregularity in both the current and contact pressure distribution, which in turn results in material pickup and pitting of the electrode (Refs. 13–16). Based on these findings, electrode life can be divided into four stages (Ref. 14) and the variation of joint strength can be explained in terms of the contact area between the electrode and the worksheet and pitting of the electrode (Fig. 1) as follows.

Stage I: Contact area grows without any significant pitting; joint strength increases.

Stage II: Joint strength reaches maximum as contact area continues to grow with incipient pitting of electrode.

Stage III: Joint strength starts decreasing as contact area continues to grow but, at the same time, the pitting of the electrode becomes significant and continues to form large cavities.

Stage IV: Joint strength reaches the failure criterion as large cavities appear on the tip surface of the electrode.

The alloying at the electrode-worksheet (EW) interface is triggered by the excessive heat generation caused by the high electrical resistance at the contact. However, it must also be remembered that this type of heat generation is responsible for the actual RSW at the faying surfaces (FS) of the aluminum alloy sheets and thus cannot be avoided (Refs. 17, 18). Consequently, the electrical contact resistance at both these interfaces (EW and FS) is of great importance to the RSW of aluminum alloys. While heat...
The electrical contact resistance at the EW interface and the degradation of the electrode tips can be influenced by various tribological features. In particular, the surface microstructure involving oxide layers, surface roughness, and the presence of a lubricant at the EW interface affects the degradation and ultimately the current flow to the FS interface where the spot weld is formed. The oxide layer (Al₂O₃) on an aluminum surface is often considered to be a uniform ceramic coating or layer. While this may be close to reality for high-purity aluminum, the oxide layer on the aluminum alloy sheets for automotive bodies is much more complex (Refs. 2, 19). The oxide layer is important because its thickness is an influential parameter in the electrical resistance (Ref. 20). Surface roughness, along with the elastic-plastic properties of the materials, also influences the electrical contact resistance (Ref. 21). Finally, the use of a lubricant to change the contact tribology has been considered to a limited extent (Refs. 22, 23).

Some research efforts have been made to alter the tribology of the contact at the EW interface by either periodically cleaning (dressing) the electrode tip (Ref. 14) or coating it with other materials (Ref. 8). However, such procedures may interrupt the manufacturing activity that involves RSW. In the present study, a different but somewhat similar approach is adopted. Since autobody sheets go through several manufacturing processes (rolling, stamping, etc.) before being placed in the vehicle and different lubricants are used for these processes, instead of using a material coating, a thin layer of lubricant is placed at one side of the aluminum sheet that touches the electrode (i.e., only at the EW interface). The strategy behind this approach is to alter the contact resistance at the EW interface without altering any feature of the FS, thus altering the tribological sequence of alloying, pickup, pitting, and eventually electrode tip failure. This approach has the merits of being simple and flexible and not interrupting the RSW manufacturing activity, and hence is more practical for the industry. The objectives of the present study are to continue and expand the previous research efforts of Rashid et al. (Ref. 6) in order to quantify the effect of using various lubricants and to eventually find an optimal lubricant for improving electrode life. The focus was given to investigate the changes in electrode life and pitting behavior under similar weld conditions by changing only the surface feature of the worksheet at the EW interface. The EW surfaces are studied both physically and chemically, and the inevitable scatter of results in this complex process is dealt with by a statistical analysis. In addition, some analytical arguments are presented to explain some of the results.

Materials and Methods

Aluminum Alloy

5182 sheets (Table 1) of 1.5 mm thickness were used for the present study. All welding was performed using a 170-kVA, medium-frequency direct current (MFDC) spot welding machine (pedestal type, custom made for University of Waterloo by Centerline Ltd., Windsor, Canada). The electrodes were Class I (Ref. 7) type made from copper and 0.15% zirconium. These electrodes were truncated type (taper angle 60 deg) with spherical tip of face diameter 10 mm and radius of curvature of 50 mm — Fig. 2. Since EW interface was the focus of the work, all experiments were performed on an aluminum alloy surface that was either (mill finished) as received or lubricated with one of six lubricants (L₁–L₆) that had been developed for various other metalworking processes. A surface (or A) indicates those experiments where all four sheet surfaces (sheet surfaces at the top and bottom EW-interfaces and FS) were used in “as-received” conditions while Lₓ-surface (or Lₓ, where x denotes the particular lubricant, 1, 2, . . . 6) represent those experiments where sheet surfaces at the top and bottom EW-interfaces were used in “as-received” conditions while Lₓ-surface (or Lₓ, where x denotes the particular lubricant, 1, 2, . . . 6) represent those experiments where sheet surfaces at the top and bottom EW-interfaces were used in “as-received” conditions while Lₓ-surface (or Lₓ, where x denotes the particular lubricant, 1, 2, . . . 6) represent those experiments where sheet surfaces at the top and bottom EW-interfaces were used in “as-received” conditions while Lₓ-surface (or Lₓ, where x denotes the particular lubricant, 1, 2, . . . 6) represent those experiments where sheet surfaces at the top and bottom EW-interfaces were used in “as-received” conditions while Lₓ-surface (or Lₓ, where x denotes the particular lubricant, 1, 2, . . . 6) represent those experiments where sheet surfaces at the top and bottom EW-interfaces were used in “as-received” conditions while Lₓ-surface (or Lₓ, where x denotes the particular lubricant, 1, 2, . . . 6) represent those experiments where sheet surfaces at the top and bottom EW-interfaces were used in “as-received” conditions while Lₓ-surface (or Lₓ, where x denotes the particular lubricant, 1, 2, . . . 6) represent those experiments where sheet surfaces at the top and bottom EW-interfaces were used in “as-received” conditions while Lₓ-surface (or Lₓ, where x denotes the particular lubricant, 1, 2, . . . 6) represent those experiments where sheet surfaces at the top and bottom EW-interfaces were used in “as-received” conditions while Lₓ-surface (or Lₓ, where x denotes the particular lubricant, 1, 2, . . . 6) represent those experiments where sheet surfaces at the top and bottom EW-interfaces were used in “as-received” conditions while Lₓ-surface (or Lₓ, where x denotes the particular lubricant, 1, 2, . . . 6) represent those experiments where sheet surfaces at the top and bottom EW-interfaces were used in “as-received” conditions while Lₓ-surface (or Lₓ, where x denotes the particular lubricant, 1, 2, . . . 6) represent those experiments where sheet surfaces at the top and bottom EW-interfaces were used in “as-received” conditions while Lₓ-surface (or Lₓ, where x denotes the particular lubricant, 1, 2, . . . 6) represent those experiments where sheet surfaces at the top and bottom EW-interfaces were used in “as-received” conditions while Lₓ-surface (or Lₓ, where x denotes the particular lubricant, 1, 2, . . . 6) represent those experiments where sheet surfaces at the top and bottom EW-interfaces were used in “as-received” conditions while Lₓ-surface (or Lₓ, where x denotes the particular lubricant, 1, 2, . . . 6) represent those experiments where sheet surfaces at the top and bottom EW-interfaces were used in “as-received” conditions while Lₓ-surface (or Lₓ, where x denotes the particular lubricant, 1, 2, . . . 6) represent those experiments where sheet surfaces at the top and bottom EW-interfaces were used in “as-received” conditions while Lₓ-surface (or Lₓ, where x denotes the particular lubricant, 1, 2, . . . 6) represent those experiments where sheet surfaces at the top and bottom EW-interfaces were used in “as-received” conditions while Lₓ-surface (or Lₓ, where x denotes the particular lubricant, 1, 2, . . . 6) represent those experiments where sheet surfaces at the top and bottom EW-interfaces were
were selected for detailed investigation by considering their influence on the electrode degradation behavior. Details of this selection will be presented in the Results and Discussion section of this paper.

Electrode life tests were conducted for L2 surfaces, L6 surfaces, and A surfaces; three life tests were performed for each surface condition. In these electrode life experiments, resistance spot welds were performed on standard welding “coupons” (10 spot welds on 50-×-400-mm aluminum strips with 35-mm gap between them). For joint strength measurements, resistance spot welds were performed on overlapped (shear test) specimen (Fig. 3) alternatively five each on L2 surfaces and A surfaces with the same pair of electrodes. All conditions were kept the same and the electrodes were wiped with methanol between each spot weld. In this manner, the influences of the subtle differences between electrode surfaces on RSW were much reduced and only the influences of the surface characteristics of the worksheet at the EW interface was measured. All surfaces were cleaned with methanol before being placed in the various high-vacuum chambers.

In order to obtain some higher resolution images along with energy-dispersive x-ray analysis (EDX), scanning electron microscopy (SEM) was used with a Jeol 840 microscope (Jeol Ltd., Tokyo, Japan) at an accelerating voltage of 20 kV. To analyze some of the adherent surface layers on both the A surface and L2 surface, electron spectroscopy for chemical analysis (ESCA) were used (ESCALAB – 250, VG Scientific, East Grinstead, UK). In addition, the alloys formed on the electrode tips were identified using x-ray diffraction (XRD) performed with a Siemens D-500 powder diffractometer (Berlin, Germany). All surfaces were cleaned with methanol before being placed in the various high-vacuum chambers.

Electrical contact resistance (static) of the EW interface was also measured to investigate the influence of lubricants on the surface regarding heat generation. Ten additional aluminum sheet specimens of 50-×-40-mm size (to avoid the shunting problems that would occur in the longer standard coupons) were prepared for each of the L2 surfaces and A surfaces so that the resistance across the EW interface could be measured along with surface roughness of the aluminum sheet. Using the MFDC spot welding machine, the specimens were clamped between the electrodes with the same welding force (6 kN) that was used for the RSW. The contact resistance of EW interface was measured at room temperature by measuring voltage drop while passing a 10-A current through the electrodes (Fig. 4, Ref. 24) using a digital low-resistance ohmmeter (DLRO-10X, AVO International, Scunthorpe, UK). The centerline-average surface roughness (Ra) of the worksheet was also measured with a direct contact profilometer (Surtronic +3, Taylor Hobson Ltd., Leicester, UK).

Features of L-Surface RSW

A second set of experiments was performed that involved RSW on the two selected lubricated surfaces (mostly concentrating on the L2 surface that performed the best in the electrode life experiments) and the A surfaces. The intent was to determine how the lubricants influenced electrode life. Four identical experiments were performed to explore the repeatability of the results. Each experiment consisted of performing RSW on overlapped (shear test) specimen (Fig. 3) alternatively five each on L2 surfaces and A surfaces with the same pair of electrodes. All conditions were kept the same and the electrodes were wiped with methanol between each spot weld. In this manner, the influences of the subtle differences between electrode surfaces on RSW were much reduced and only the influences of the surface characteristics of the worksheet at the EW interface were highlighted.

As in the electrode life experiments, a tensile testing machine was used to determine the joint shear strength but this time optical microscopy was also used to measure the weld nugget diameter after the shear strength test as well as the diameter of indentation of the upper electrode into the worksheet. Spot welds on L2 surface and A surface were sectioned longitudinally and observed with optical microscopy to explore weld nugget geometry. Also, hardness measurements were performed prior to the welding using a standard Vickers hardness tester (LECO MHT-200 Vickers microhardness tester, Wilson Instrument, Canton, Mass.) with a load of 50 kg. On L2 surface and A surface to explore the change in hardness of the worksheet surface with the application of lubricant (L2). The various differences between the L2 surface and A surface were assessed with an elementary statistical analysis (student’s t-test with a 0.05 significance level).

Table 3 — Significant Events for Each Life Test

<table>
<thead>
<tr>
<th>Electrode Condition</th>
<th>A surfaces</th>
<th>L2 surface</th>
<th>L6 surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test No.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visible pit initiation on electrode</td>
<td>65</td>
<td>96</td>
<td>180</td>
</tr>
<tr>
<td>Pitting visible in carbon imprint</td>
<td>110</td>
<td>110</td>
<td>220</td>
</tr>
<tr>
<td>Peak strength</td>
<td>110</td>
<td>110</td>
<td>165</td>
</tr>
<tr>
<td>Electrode fail</td>
<td>420</td>
<td>325</td>
<td>435</td>
</tr>
</tbody>
</table>
Results and Discussion

Electrode Life Test

Results from the initial screening tests (Fig. 5) showed that all these lubricants influenced RSW (Ref. 6). Optical stereoscopic views of the top (positive) electrodes at low magnification showed that most of the lubricants sustained combustion due to high heat generation at EW interface. Consequently, electrode degradation occurred even more rapidly than for the A surface that did not have any lubricant. However, the electrodes for the various lubricants degraded at different rates. Welding on the L2 surface produced an almost clean electrode tip surface while welding on the L6 surface showed the heaviest degradation of electrode. Both these lubricants were water-based synthetic lubricant used for metalworking of ferrous and nonferrous (including aluminum) alloys. These two lubricants then selected for further investigation as “good” and “bad” lubricants for RSW of aluminum alloys.

Although the results were somewhat scattered, the electrode life experiments showed that, for the same welding conditions, the “bad” lubricant (L6 surface) caused electrode failure at very early stages, while the “good” lubricant (L2 surface) extended the electrode life to almost double the electrode life of the A surface. Figure 6 shows the electrode life results for A and L2 surfaces in terms of joint shear strength plotted against weld spot numbers. The straight line (dashed) represents the failure load at 3.92 kN as described earlier. All these curves followed the four stages of electrode life, i.e., joint shear strength increased initially and reached a peak before dropping down to the failure mark (as shown in Fig. 1). The average electrode life for L2 surfaces was 730 welds (range: 700–775) while the average electrode life for A surfaces was only 393 welds (range: 325–435). In the case of the L2 surface and A surface, the declining joint strength defined failure while for the L6 surface, electrode sticking and explosion defined failure. In all three tests with L6, the electrode started pitting at a very early stage. Then, the electrodes started sticking to the work surfaces and producing explosions so that the average electrode life was 98 welds (range: 37–198). Thus, it was very clear that lubricants on the worksheet surface could influence electrode life.

The sequence of significant events in electrode life included detection of pitting, peak joint shear strength, and failure (Table 3). The degradation of the electrode surfaces was illustrated by carbon imprints taken at various stages — Fig. 7. While welding on L6 surfaces, significant physical damage to the electrodes occurred. For L2 surfaces and the A surfaces, it was alloying, pickup, and pitting that were the main indicators of electrode degradation (Table 3). However, different alloying and pitting rates occurred for these surface conditions. In general, an early start of pitting caused early failure of the electrode; however, based on the present observations, it was discovered that the rate of alloying and pitting should also be considered for predicting electrode lives. In two out of three tests of both the L2 and A surfaces, pitting started at around 110 welds but for all of the L2 surfaces, the rate of pitting was slower with large central portions not pitted and remaining in contact until about 500 welds compared with about 200 welds for the A surfaces. The larger number of welds needed (Table 3) for the L2 surfaces to reach the peak joint strength (Stage II) supported this view of the importance of pitting rate.

Another interesting observation from electrode life tests (Fig. 6) was the joint strength for these surfaces. Though there was considerable overlap in the data, the joint strength of the L2 surfaces, during the initial stage of the life, were slightly lower than that of A surfaces. However, after the first few welds, the joint strength of the L2 surfaces starts exceeding that of the A surfaces and remains higher to produce longer electrode life. Since welding conditions, failure criterion, and FS characteristics were kept the same for all these surfaces, the difference in pitting rate and, hence, electrode life occurred due to change of the only variable, i.e., the surface characteristics of the worksheet at the EW interface. This effect was further investigated in the following sections.

Features of L-surface RSW

A detailed investigation was conducted to explore the possible reasons for the different performance of the two lubricated surfaces (L2 and L6 surfaces) compared with the A surface. The focus of this investigation was on the “good” lubricant (L2). As mentioned earlier, there was a very slight difference between the initial joint strength of A and L2 surfaces, though there was considerable overlap. The average initial joint shear strength for each of the three tests of the L2 surfaces was 4.88 ± 0.32 kN, whereas for the A surfaces, it was 5.06 ± 0.26 kN and for the L6 surfaces it was even higher at 5.57 ± 0.23 kN. These differences, though not huge, provided some insight into the tribological mechanisms that were eventually responsible for the increased electrode tip life with the L2 surfaces. So, to explore the initial joint shear strength in more detail, a second set of experiments was performed (as described previously) and included measurements of weld nugget diameter as well as the diameter of the indentation of the electrode tip into the worksheet surface.
Initial Joint Shear Strength

When planning this second set of experiments, it was realized that it was not possible to provide exactly the same electrode (even if they are selected from the same batch) or worksheet surfaces (even if they are from the same sheet). Small variations in microstructure and roughness of the surfaces were essentially inherent in them, and they could significantly influence the tribological interaction of the surfaces and thus the weld strength and ultimately the electrode tip life. However, as described previously, if the same electrodes were used for small numbers of successive welds of the A surface and the L2 surface, the variable nature of the electrode tip could be eliminated and the variable nature of the worksheet surfaces could be tested.

Four sets of joint strength experiments were performed; in each set five overlapped specimens each from A surface and L2 surface were welded alternatively with the same pair of electrodes. Each of these sets showed higher values of joint shear strength for A surface compared with L2 surface — Fig. 8. For same surfaces (A surface or L2 surface), the variability between these sets were related to randomly distributed differences between these surfaces inherent to these kind of experiments. However, within one set, where the surface variability of the electrode tip was removed, the differences in joint shear strength of spot welds for the A surfaces compared with the L2 surfaces were related to the lubricant action. So, two sets of data were assembled, one containing all of the L2-surface data and the other containing all of the A-surface data. The average joint shear strength for the L2 surface of 5.01 kN was lower than the average joint shear strength for the A surface of 5.37 kN. Although the difference is not huge in terms of strength, it was statistically different (p < 0.005).

Nugget and Indentation Diameter

For good quality weld, joint shear strength was considered very likely to be related directly to the nugget diameter. And, therefore, it was decided to investigate the nugget diameter in order to validate its relation with the joint strength as well as the weld quality. As expected, the nugget diameter distributions (Fig. 9) looked very similar to the joint shear strength distributions (Fig. 8). Using the same assumptions as before, two sets of data were assembled, one containing all of the L2-surface data and the other containing all of the A-surface data. The average nugget diameter for the L2 surface of 6.57 mm was statistically smaller than the average nugget diameter for the A surface of 6.78 mm (p < 0.001). In the process, it was also found interesting that the two surfaces showed a difference in the diameter of indentation of the upper electrode into the worksheet surface — Fig. 10. The same data assembly was performed as described in the previous two paragraphs. The average indentation diameter for the L2 surface of 8.30 mm was again statistically smaller than the average indentation diameter for the A surface of 8.42 mm (p < 0.001). The implications of these findings are discussed in the next section.

Heat Generation at the EW Interface

One possible explanation for different initial joint shear strengths (or nugget diameters) of the L2 and A surfaces was related to the heat transfer from the FS through the EW interface to the cooling water that was circulated within the electrode. During the current cycle, heat was generated at the FS and melted the surrounding material to form the weld nugget that grew until the end of solidification (Refs. 17, 18). The electrodes were water cooled and the majority of the heat generated at the interfaces (EW and FS) was
transferred to the cooling water through the EW interface. Clearly, the rate of heat transfer from the FS to the cooling water would be directly influenced by the heat generation at the interposed EW interface. Since lubricants were applied only at the EW interfaces and not at the faying surface, for the same amount of current and time, the heat generation at the faying interface is always the same. However, a lower heat generation at the EW interface would allow a faster rate of heat transfer from the FS. This would result in lowering the time of solidification and hence a smaller weld nugget. Thus, the smaller average nugget diameter, reported in the previous section for the L2 surfaces compared with the A surfaces, indicated that there was less heat generation (lower temperature) at the EW interface for the L2 surfaces. This smaller nugget diameter was illustrated by typical longitudinal sections of the L2- and A-surface welds — Fig. 11.

There was further support for the concept of less heat generation and lower temperature at the EW interface for the L2 surface. Vickers hardness testing of the L2 and A surfaces were conducted prior to any welding. It was observed that the hardness of the aluminum worksheet did not change with the application of lubricant L2 to its surface. However, the results presented in the previous section indicated that, during the RSW, the average diameter of the indentation of electrodes into the sheet surface was smaller for the L2 surface compared with the A surface — Fig. 10. Since both these surfaces started with the same hardness level, one plausible explanation for different indentation was related to the heat generation at the EW interface. Since thermal softening of metals and alloys occurs at high temperature (Ref. 25), less penetration of electrode into worksheet for L2 surfaces suggested less thermal softening hence lower heat generation at this interface compare to A surface.

Having obtained support for the idea that the temperature at the EW interface was lower for the L2 surface than for the A surface, the next step was to find the reason for this lower temperature.

Surface Oxide Layer

A lower surface temperature would occur at the EW interface if the L2 lubricant acted to decrease the thickness of the surface oxide layer, which would reduce the electrical resistance and thus the heat generation. The possibility of a reduced oxide layer thickness was suggested by the following observation. While applying the L2 lubricant to the worksheet surface, it was found that the color of the white cotton balls turned grey or black whereas for the “poor” L6 lubricant they retained the actual color of the L6 lubricant. This observation suggested that some chemical change occurred at the surface of the aluminum sheet when the lubricant L2 was used and investigations were performed to explore this possibility.

Optical microscopy provided further insight. The same points on a rough aluminum worksheet were examined before and after application of L2 lubricant — Fig. 12. All these surfaces were wiped with methanol before viewing them. The L2 surface appeared lighter in color and seemed to have material removed from the sheet surface. Further support for this finding was provided by higher resolution SEM images of equivalent points on a worksheet surface before and after applying the L2 lubricant — Fig. 13. However, when this procedure was repeated for

Table 4 — Intermetallic Reactions for Different Cu-Al Phases (Ref. 27)

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L ↔ Al + θ</td>
<td>548.2</td>
</tr>
<tr>
<td>L + η₁ ↔ θ</td>
<td>591</td>
</tr>
<tr>
<td>L ↔ (Cu) + θ</td>
<td>1032</td>
</tr>
<tr>
<td>β ↔ (Cu) + γ₁</td>
<td>567</td>
</tr>
<tr>
<td>γ₀ ↔ β + γ₁</td>
<td>780</td>
</tr>
<tr>
<td>γ₀ + ε₁ ↔ γ₁</td>
<td>873</td>
</tr>
</tbody>
</table>

Table 5 — Electrical Contact Resistance (Static) of the EW Interface and Centerline Average Surface Roughness (Ra) of the Worksheet (Ref. 6)

<table>
<thead>
<tr>
<th></th>
<th>A surface</th>
<th>L2 surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roughness (μm)</td>
<td>0.30</td>
<td>0.28</td>
</tr>
<tr>
<td>Resistance (μΩ)</td>
<td>10.3</td>
<td>7.8</td>
</tr>
<tr>
<td>Highest</td>
<td>0.52</td>
<td>0.34</td>
</tr>
<tr>
<td>Average</td>
<td>0.34</td>
<td>0.31</td>
</tr>
<tr>
<td>Std Dev</td>
<td>0.06</td>
<td>0.02</td>
</tr>
<tr>
<td>Roughness (μm)</td>
<td>1.0</td>
<td>8.6</td>
</tr>
<tr>
<td>Resistance (μΩ)</td>
<td>13.5</td>
<td>9.4</td>
</tr>
<tr>
<td>Lowest</td>
<td>0.28</td>
<td>8.6</td>
</tr>
<tr>
<td>Highest</td>
<td>0.34</td>
<td>0.02</td>
</tr>
<tr>
<td>Average</td>
<td>0.31</td>
<td>0.5</td>
</tr>
<tr>
<td>Std Dev</td>
<td>0.02</td>
<td>0.5</td>
</tr>
</tbody>
</table>
freshly polished surfaces (Fig. 14), there was no apparent change in the appearance of the L2 surface. This finding was consistent because the oxide layer would be much thinner after the polishing and would have needed considerable time to develop an increased thickness (Ref. 2).

In order to provide further proof that the oxide layer had thinned with the application of lubricant L2, one sample each from the A surface and the L2 surface were examined by ESCA. Specimens were cut in 6 mm × 6 mm size and were cleaned with methanol before being placed into a vacuum chamber. Both samples were placed into the same chamber at the same time. The results were plotted for the intensity (count per second or CPS) of radiation of both aluminum and oxygen, presented in the surface oxide (Al₂O₃) layer, against sputtering time — Fig. 15. More intensity (CPS) at the same sputtering time suggests more concentration of that particular element on the surface. Similarly, longer sputtering time to achieve the same intensity level suggests a thick surface layer for that particular element. Interestingly, for both these elements, the intensity at any sputtering time was lower for the L2 surface compared to the A surface; thus showing a thinner (or low concentration of) oxide layer on the aluminum sheet surface that was treated with the lubricant L2.

Alloys on the Electrode Surface

As described previously, 100 spot welds were performed on L2 and A surfaces to investigate the type and properties of intermetallic phases formed during the spot welds and their influence on the subsequent electrode life. This was done by analyzing the top (positive) electrodes with x-ray diffraction (XRD). Since electrodes are made of copper, higher intensities of Cu than Cu-Al phases were expected. However, the occurrence of the intensity peaks for Cu-Al phases were well matched with the standard XRD pattern for that phase — Fig. 16. The Cu₅Al₄ (γ₁ phase) was observed at about 44.2 deg on both electrodes while the intensity peaks for CuAl₂ (θ phase) were found only at the electrode that had been in contact with the L2 surface. These peaks occurred at 42.7, 47.4, and 47.9 deg, which matched the standard XRD pattern for the first peak at 42.6 deg, second peak at 47.3 deg, and third peak at 47.8 deg for this phase (Ref. 26). The match was good enough to be-
lieve that the CuAl2 phase was present on the electrode surface used in welding the L2 surface but not on the electrode surface used in welding the A surface.

Based on the reaction kinetics (Table 4 (Ref. 27)), the CuAl2 formed at a lower temperature (550°–600°C) while the Cu9Al4 formed at a higher temperature (700°–873°C). Finding Cu9Al4 when both the L2 and A surfaces were subject to RSW meant that higher temperatures at the EW interface were present in both cases. However, finding only CuAl2 when the L2 surface was subject to RSW meant that some lower temperatures were experienced. This finding was consistent with the idea of lower heat generation at the EW interface for the L2 surface due to the reduction of oxide layer thickness. There was also likely to be a further contributing factor. Aluminum-copper alloys were considered to be electrical insulators compared with pure aluminum or copper. However, the conductivity of CuAl2 was almost double that of Cu9Al4 (Ref. 16). Thus, once CuAl2 was present it helped reduce the electrical resistance and keep the interface temperatures lower compared with the regions having Cu9Al4. Presumably, this helped reduce the rate of surface pitting and cavity formation during the electrode life tests for the L2 surface.

Electrical Resistance

During the course of the weld cycle, the contact resistances at the EW and FS interfaces were subject to change due to local melting. However, contact resistance at the top EW interface measured prior to the passage of the high weld current was considered as an indicator of the performance of the electrodes in subsequent RSW (Refs. 24, 28). Thus, contact resistance across the top EW interface was measured for ten L2 surfaces and ten A surfaces (Table 5). The L2 surface seemed to have a lower average electrical resistance than the A surface. This finding provided additional support for the idea that oxide layer thickness was reduced.

It was also observed that the application of lubricant L2 improved the roughness of the worksheet. In general, a higher surface roughness results in lower contact resistance as more asperities crack under load and produce more fresh metal-to-metal contacts. However, in the case of aluminum, the effect of oxide layer thickness on the contact resistance was more dominating than the roughness (Ref. 23, 28). This effect was investigated in another study (Ref. 28) where contact resistance between electrode and AA5182 sheets (without lubricant), grinded with different grades of sandpapers, were measured. It was found that the EW contact resistance was decreased from 9.1 μΩ for a roughness level 0.24 μm to 7.2 μΩ for a roughness level of 1.08 μm. The study suggested that the grinded surfaces had a fresh (thin) oxide layer and hence lower contact resistances than unground (as-received) surfaces (11.6 μΩ for a roughness level of 0.32 μm). In the present study, while comparing the A surface with the L2 surface, the roughness levels were very close to each other (0.34 and 0.31 μm, respectively, Table 5). It was believed that this small variation in roughness was not significant enough to reduce the contact resistance from 11.2 μΩ (A surface) to 8.6 μΩ (L2 surface). Thus, a reduction in oxide layer thickness seemed to be the most likely explanation for the reduced contact resistance and hence lower temperature at the EW interface for the L2 surfaces.

Conclusions

Resistance spot welding of AA5182 was investigated using different metal-working lubricants placed only on one side of the worksheet associated with the electrode-worksheet interface (i.e., top and bottom EW interfaces). Based on a screening test, it was observed that placing a lubricant only at the EW interface can influence the electrode degradation significantly. One lubricant (L2) was identified as “good” for resistance spot welding of AA5182 compared to other lubricants, which showed negative effect on electrode degradation. Electrode life tests were conducted (three each) for good lubricant (L2 surface), bad lubricant (L6 surface), and as received (A surface). For the same welding conditions, faying surface characteristics, and failure criterion, the presence of lubricant L2 at the EW interface extended the electrode life to 730 welds, which was almost double the electrode life for the A surface.
The improvement of electrode life was associated with a slower pitting rate, which resulted due to the application of good lubricant (L2) on the electrode. This reduction in alloying and pitting led to a longer electrode life. It was observed, through several analytical arguments, that the slower pitting rate of electrodes associated with the L2 surface was due to the lesser heat generation at the EW interface for the L2 surface compared to the A surface.

Physical and chemical analysis of the L2 and A surfaces revealed that the worksheet oxide layer thickness was reduced very short and inconsistent electrode life was associated with a slower electrode wear on aluminum resistance spot welding.

Future Work

Although the electrode life was substantially extended by using the L2 surface, further improvements might be possible. Thus, future work is needed to find the details of the mechanism responsible for the effectiveness of L2 and to attempt to develop an even better lubricant.

Acknowledgments

This study has been supported by the Natural Science and Engineering Research Council (NSERC) and the Automobile of the 21st Century (Auto21), one of the Networks of Center of Excellence (NCE) programs, both established by the Canadian government.

References